Advanced First-Principle Study of AgGaTe₂ and AgInTe₂ Chalcopyrite Semiconductors: Structural, Electronic, and Optical Properties via FPLAPW within WIEN2K
Abstract
In this paper, we present a detailed theoretical exploration of the ternary chalcopyrite semiconductors AgGaTe₂ and AgInTe₂ using first-principles calculations grounded in Density Functional Theory (DFT). The simulations are carried out within the Full-Potential Linearized Augmented Plane Wave (FPLAPW) formalism as implemented in the WIEN2k computational package. Structural properties are optimized using the WC-GGA exchange–correlation functional, whereas the electronic and optical responses are refined through the modified Becke–Johnson (mBJ) potential, known for its improved bandgap estimation accuracy. The study involves a thorough evaluation of the electronic band structures and various optical parameters, including the complex dielectric function, absorption coefficient, refractive index, energy-loss function, and reflectivity. The findings reveal that both materials possess direct bandgaps that lie within the optimal range for solar cell absorption. Additionally, these compounds show strong light absorption in the visible and near-infrared regions, high refractive indices, and marked interband transitions. Such features highlight their suitability for photovoltaic technologies, especially in thin-film configurations where enhanced light capture and carrier generation are critical. Moreover, the observed optical and electronic properties also suggest possible utilization in infrared detection and nonlinear optoelectronic systems. Overall, the results contribute valuable theoretical insight into the optoelectronic characteristics of silver-based telluride chalcopyrites, reinforcing their potential as environmentally friendly and efficient materials for future solar energy solutions.
Downloads
References
A.S. Verma, Philos. Mag. 89, 183 (2009). https://doi.org/10.1080/14786430802593814
C. Catella, and D. Burlage, Mater. Res. Bull. 23, 28 (1998). https://doi.org/10.1557/S0883769400029055
M.C. Ohmer, J.T. Goldstein, D.E. Zelmon, A. Waxler, S.M. Hegde, J.D. Wolf, P.G. Schunemann, and T.M. Pollak, J. Appl. Phys. 86, 94 (1999). https://doi.org/10.1063/1.370704
A.S. Verma, and S.R. Bhardwaj, Phys. Scr. 79, 015302 (2009). https://doi.org/10.1088/0031-8949/79/01/015302
V.V. Badikov, O.N. Pivovarov, Y.V. Skokov, O.V. Skrebneva, and N.K. Trotsenko, Sov. J. Quantum Electron. 5, 3502 (1975). https://doi.org/10.1070/qe1975v005n03abeh011027
T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G.J. Snyder, et al., Adv. Mater. 24, 3622 (2012). https://doi.org/10.1002/adma.201200732
T. Plirdpring, K. Kurosaki, A. Kosuga, M. Ishimaru, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, et al. Mater. Trans. 53, 1212 (2012). https://doi.org/10.2320/matertrans.e-m2012810
R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, and L. Chen, Chem. Commun. (Camb.) 48, 3818 (2012). https://doi.org/10.1039/C2CC30318C
J. Yao, N. Takas, M. Schliefert, D. Paprocki, P. Blanchard, H. Gou, A. Mar, et al. J. Aitken, Phys. Rev. B, 84, 075203 (2011). https://doi.org/10.1103/PhysRevB.84.075203
Y. Li, Q. Meng, Y. Deng, H. Zhou, Y. Gao, Y. Li, J. Yang, and J. Cui, Appl. Phys. Lett. 100, 231903 (2012). https://doi.org/10.1063/1.4726109
A. Kosuga, T. Plirdpring, R. Higashine, M. Matsuzawa, K. Kurosaki, and S. Yamanaka, Appl. Phys. Lett. 100, 042108 (2012). https://doi.org/10.1063/1.3678044
A.V. Kopytov, and A.V. Kosobutsky, Phys. Solid State, 52, 1359 (2010). https://doi.org/10.1134/s1063783410070061
D. Xue, K. Betzler, and H. Hesse, Phys. Rev. B, 62, 13546 (2000). https://doi.org/10.1103/physrevb.62.13546
A.H. Reshak, Physica B, 369, 243 (2005). https://doi.org/10.1016/j.physb.2005.08.038
S. Sharma, A.S. Verma, and V.K. Jindal, Mater. Res. Bull. 53, 218 (2014). https://doi.org/10.1016/j.materresbull.2014.02.021
E. Wimmer, “Computational methods for atomistic simulations of materials,” Materials Science and Engineering: B, 37(1-3), 72 (1996). https://doi.org/10.1016/0921-5107(95)01459-4
P. Kiréev, ' la physique des semi-conducteur, (Mir, Moscow, 1979). https://archive.org/details/p.-kireev-la-physique-des-semiconducteurs-mir-1975/page/228/mode/2up (in Russian)
M. Born, j., and R. Oppenheimer, Ann. Phys. 87, 457 (1927). https://doi.org/10.1002/andp.19273892002
D.R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, 24(1), 89 (1928). https://doi.org/10.1017/S0305004100011919
V. Fock, Z. Phys. 61, 126 (1930). http://dx.doi.org/10.1007/BF01340294
A. Zunger, and A.J. Freeman, Phys. Rev. B, 16, 2901 (1977). https://doi.org/10.1103/PhysRevB.16.2901
J.P. Perdew, and A. Zunger, Phys. Rev. B, 23, 5048 (1981). https://doi.org/10.1103/physrevb.23.5048
L.H. Thomas, “The calculation of atomic fields,” Mathematical Proceedings of the Cambridge Philosophical Society, 23(5), 542 (1927). Published online by Cambridge University Press: 24 October 2008. https://doi.org/10.1017/S0305004100011683
E. Fermi, Z. Phys. 48, 73 (1928). https://doi.org/10.1007/bf01351576
P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
J.P. Perdew, and Y. Wang, Phys. Rev. B, 45, 13244 (1992). https://doi.org/10.1103/physrevb.45.13244
A. Chahed, O. Benhelal, H. Rozale, S. Laksari, and N. Abbouni, Phys. Status Solidi, B, 244, 629 (2007). https://doi.org/10.1002/pssb.200642050
S. Ullah, U.D. Haleem, G. Murtaza, T. Ouahrani, R. Khenata, S. Naeemullah, Bin Omran, J. Alloys Compd. 617, 575 (2014). https://doi.org/10.1016/j.jallcom.2014.08.058
E. Jaffe, A. Zunger, Phys. Rev. B, 29, 1882 (1983). https://doi.org/10.1103/PhysRevB.29.1882
J.L. Shay, and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, (Pergamon Press, Oxford, 1975). https://doi.org/10.1016/C2013-0-02602-3
W.N. Honeyman, K.H. Wilkinson, J. Phys. D, 4, 1182 (1971). https://doi.org/10.1088/0022-3727/4/8/319
K. Beggas, et al., Indian J. Phys. 98, 2755 (2024). http://dx.doi.org/10.1007/s12648-023-03049-4
S.A. Bendehiba, et al. Materials Science in Semiconductor Processing, 183, 108772 (2024), https://doi.org/10.1016/j.mssp.2024.108772
Copyright (c) 2025 Abdelghani Koubil, Mohamed Khettal, Yousra Megdoud, Mosbah Laouamer, Yamina Benkrima, Latifa Tairi, Redha Meneceur

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



