Advanced First-Principle Study of AgGaTe₂ and AgInTe₂ Chalcopyrite Semiconductors: Structural, Electronic, and Optical Properties via FPLAPW within WIEN2K

  • Abdelghani Koubil Institute of Sciences, University Center of Tipaza, Algeria
  • Mohamed Khettal Institute of Sciences, University Center of Tipaza, Algeria
  • Yousra Megdoud Institute of Sciences, University Center of Tipaza, Algeria https://orcid.org/0000-0001-8999-8134
  • Mosbah Laouamer UDERZA Unit, Faculty of Technology, University of El-Oued, Algeria https://orcid.org/0000-0002-6374-6075
  • Yamina Benkrima Ecole Normale Superieure de Ouargla, Algeria https://orcid.org/0000-0001-8005-4065
  • Latifa Tairi Research Center In Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • Redha Meneceur UDERZA Unit, Faculty of Technology, University of El-Oued, Algeria https://orcid.org/0000-0002-1801-0835
Keywords: FPLAPW, Density Functional Theory, Modified Becke–Johnson, Electronic structure, Optical analysis

Abstract

In this paper, we present a detailed theoretical exploration of the ternary chalcopyrite semiconductors AgGaTe₂ and AgInTe₂ using first-principles calculations grounded in Density Functional Theory (DFT). The simulations are carried out within the Full-Potential Linearized Augmented Plane Wave (FPLAPW) formalism as implemented in the WIEN2k computational package. Structural properties are optimized using the WC-GGA exchange–correlation functional, whereas the electronic and optical responses are refined through the modified Becke–Johnson (mBJ) potential, known for its improved bandgap estimation accuracy. The study involves a thorough evaluation of the electronic band structures and various optical parameters, including the complex dielectric function, absorption coefficient, refractive index, energy-loss function, and reflectivity. The findings reveal that both materials possess direct bandgaps that lie within the optimal range for solar cell absorption. Additionally, these compounds show strong light absorption in the visible and near-infrared regions, high refractive indices, and marked interband transitions. Such features highlight their suitability for photovoltaic technologies, especially in thin-film configurations where enhanced light capture and carrier generation are critical. Moreover, the observed optical and electronic properties also suggest possible utilization in infrared detection and nonlinear optoelectronic systems. Overall, the results contribute valuable theoretical insight into the optoelectronic characteristics of silver-based telluride chalcopyrites, reinforcing their potential as environmentally friendly and efficient materials for future solar energy solutions.

Downloads

Download data is not yet available.

References

A.S. Verma, Philos. Mag. 89, 183 (2009). https://doi.org/10.1080/14786430802593814

C. Catella, and D. Burlage, Mater. Res. Bull. 23, 28 (1998). https://doi.org/10.1557/S0883769400029055

M.C. Ohmer, J.T. Goldstein, D.E. Zelmon, A. Waxler, S.M. Hegde, J.D. Wolf, P.G. Schunemann, and T.M. Pollak, J. Appl. Phys. 86, 94 (1999). https://doi.org/10.1063/1.370704

A.S. Verma, and S.R. Bhardwaj, Phys. Scr. 79, 015302 (2009). https://doi.org/10.1088/0031-8949/79/01/015302

V.V. Badikov, O.N. Pivovarov, Y.V. Skokov, O.V. Skrebneva, and N.K. Trotsenko, Sov. J. Quantum Electron. 5, 3502 (1975). https://doi.org/10.1070/qe1975v005n03abeh011027

T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G.J. Snyder, et al., Adv. Mater. 24, 3622 (2012). https://doi.org/10.1002/adma.201200732

T. Plirdpring, K. Kurosaki, A. Kosuga, M. Ishimaru, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, et al. Mater. Trans. 53, 1212 (2012). https://doi.org/10.2320/matertrans.e-m2012810

R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, and L. Chen, Chem. Commun. (Camb.) 48, 3818 (2012). https://doi.org/10.1039/C2CC30318C

J. Yao, N. Takas, M. Schliefert, D. Paprocki, P. Blanchard, H. Gou, A. Mar, et al. J. Aitken, Phys. Rev. B, 84, 075203 (2011). https://doi.org/10.1103/PhysRevB.84.075203

Y. Li, Q. Meng, Y. Deng, H. Zhou, Y. Gao, Y. Li, J. Yang, and J. Cui, Appl. Phys. Lett. 100, 231903 (2012). https://doi.org/10.1063/1.4726109

A. Kosuga, T. Plirdpring, R. Higashine, M. Matsuzawa, K. Kurosaki, and S. Yamanaka, Appl. Phys. Lett. 100, 042108 (2012). https://doi.org/10.1063/1.3678044

A.V. Kopytov, and A.V. Kosobutsky, Phys. Solid State, 52, 1359 (2010). https://doi.org/10.1134/s1063783410070061

D. Xue, K. Betzler, and H. Hesse, Phys. Rev. B, 62, 13546 (2000). https://doi.org/10.1103/physrevb.62.13546

A.H. Reshak, Physica B, 369, 243 (2005). https://doi.org/10.1016/j.physb.2005.08.038

S. Sharma, A.S. Verma, and V.K. Jindal, Mater. Res. Bull. 53, 218 (2014). https://doi.org/10.1016/j.materresbull.2014.02.021

E. Wimmer, “Computational methods for atomistic simulations of materials,” Materials Science and Engineering: B, 37(1-3), 72 (1996). https://doi.org/10.1016/0921-5107(95)01459-4

P. Kiréev, ' la physique des semi-conducteur, (Mir, Moscow, 1979). https://archive.org/details/p.-kireev-la-physique-des-semiconducteurs-mir-1975/page/228/mode/2up (in Russian)

M. Born, j., and R. Oppenheimer, Ann. Phys. 87, 457 (1927). https://doi.org/10.1002/andp.19273892002

D.R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, 24(1), 89 (1928). https://doi.org/10.1017/S0305004100011919

V. Fock, Z. Phys. 61, 126 (1930). http://dx.doi.org/10.1007/BF01340294

A. Zunger, and A.J. Freeman, Phys. Rev. B, 16, 2901 (1977). https://doi.org/10.1103/PhysRevB.16.2901

J.P. Perdew, and A. Zunger, Phys. Rev. B, 23, 5048 (1981). https://doi.org/10.1103/physrevb.23.5048

L.H. Thomas, “The calculation of atomic fields,” Mathematical Proceedings of the Cambridge Philosophical Society, 23(5), 542 (1927). Published online by Cambridge University Press: 24 October 2008. https://doi.org/10.1017/S0305004100011683

E. Fermi, Z. Phys. 48, 73 (1928). https://doi.org/10.1007/bf01351576

P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

J.P. Perdew, and Y. Wang, Phys. Rev. B, 45, 13244 (1992). https://doi.org/10.1103/physrevb.45.13244

A. Chahed, O. Benhelal, H. Rozale, S. Laksari, and N. Abbouni, Phys. Status Solidi, B, 244, 629 (2007). https://doi.org/10.1002/pssb.200642050

S. Ullah, U.D. Haleem, G. Murtaza, T. Ouahrani, R. Khenata, S. Naeemullah, Bin Omran, J. Alloys Compd. 617, 575 (2014). https://doi.org/10.1016/j.jallcom.2014.08.058

E. Jaffe, A. Zunger, Phys. Rev. B, 29, 1882 (1983). https://doi.org/10.1103/PhysRevB.29.1882

J.L. Shay, and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, (Pergamon Press, Oxford, 1975). https://doi.org/10.1016/C2013-0-02602-3

W.N. Honeyman, K.H. Wilkinson, J. Phys. D, 4, 1182 (1971). https://doi.org/10.1088/0022-3727/4/8/319

K. Beggas, et al., Indian J. Phys. 98, 2755 (2024). http://dx.doi.org/10.1007/s12648-023-03049-4

S.A. Bendehiba, et al. Materials Science in Semiconductor Processing, 183, 108772 (2024), https://doi.org/10.1016/j.mssp.2024.108772

Published
2025-12-08
Cited
How to Cite
Koubil, A., Khettal, M., Megdoud, Y., Laouamer, M., Benkrima, Y., Tairi, L., & Meneceur, R. (2025). Advanced First-Principle Study of AgGaTe₂ and AgInTe₂ Chalcopyrite Semiconductors: Structural, Electronic, and Optical Properties via FPLAPW within WIEN2K. East European Journal of Physics, (4), 427-434. https://doi.org/10.26565/2312-4334-2025-4-42