Constrained Dynamics of Holographic Dark Energy in Modified f (R) Gravity
Abstract
In the present work, we examine the dynamical behaviour of holographic dark energy (HDE) within the framework of modified f(R) gravity in a hypersurface-homogeneous space-time. To explore the universe's evolutionary behaviour under the influence of dark energy, we consider both exponential and power-law expansions. The cosmic evolution is analysed using standard cosmological diagnostics, including the density parameter and equation of state (EoS) parameter along with the deceleration parameter. Furthermore, the statefinder diagnostic pair is tested to detect precisely different phases of the universe. The squared speed of sound parameter was used to incorporate the stability analysis for our models. This investigation links the principles of quantum gravity to cosmology, producing testable predictions for forthcoming research and illustrating that HDE functions as a credible alternative to ΛCDM.
Downloads
References
A.G. Riess, et al., Astron. J. 116, 1009 1998). https://doi.org/10.1086/300499
A.G. Riess, et al., Astron. J. 117, 707 (1999). https://doi.org/10.1086/300738
S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
P. De Bernardis, et al., Nature, 404, (2000). https://doi.org/10.1038/35010035
E. Komatsu, et al., Astrophys. J. Suppl. Ser. 192, 18 (2011). http://dx.doi.org/10.1088/0067-0049/180/2/330
M. Tegmark, et al., Phys. Rev. D, 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501
U. Seljak, et al., Phys. Rev. D, 71, 103515 (2005). https://doi.org/10.1103/PhysRevD.71.103515
K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8
M. Sharif and M. Zubair, Astrophys. Space Sci. 330, 399 (2010). https://doi.org/10.1007/s10509-010-0414-y
S.M. Carroll, W.H. Press, and E.L. Turner, Annu. Rev. Astron. Astrophys. 30, 499 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002435
M.S. Turner, and M. White, Phys. Rev. D, 56, R4439 (1997). https://doi.org/10.1103/PhysRevD.56.R4439
V. Sahni, and L. Wang, Phys. Rev. D, 62, 103517 (2000). https://doi.org/10.1103/PhysRevD.62.103517
A.G. Cohen, D.B. Kaplan, and A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971
M. Li, Physics Letters B, 603, 1-2 (2004). https://doi.org/10.1016/j.physletb.2004.10.014
V.C. Dubey, and U.K. Sharma, New Astron. 86, 101586 (2021). https://doi.org/10.1016/j.newast.2021.101586
S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys. Lett. B, 664, 12 (2008). https://doi.org/10.1016/j.physletb.2008.04.061
S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 659, 821 (2008). https://doi.org/10.1016/j.physletb.2007.12.001
D.D. Pawar, R.V. Mapari, and P.K. Agrawal, J. Astrophys. Astron. 40, 13 (2019). https://doi.org/10.1007/s12036-019-9582-5
S.D. Katore, and S.V. Gore, J. Astrophys. Astron. 41, 12 (2020). https://doi.org/10.1007/s12036-020-09632-z
C.P. Singh, and A. Beesham, Gravit. Cosmol. 17, 284 (2011). https://doi.org/10.1134/S020228931103008X
H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1
A.A. Starobinsky, JETP Lett. 86, 157 (2007). https://doi.org/10.1134/S0021364007150027
P.A.R. Ade, et al., A&A, 571, A22 (2014). https://doi.org/10.1051/0004-6361/201321569
S.D. Katore, and A.Y. Shaikh, Astrophys. Space Sci. 357, 27 (2015). https://doi.org/10.1007/s10509-015-2297-4
S.H. Shekh, and K. Ghaderi, Phys. Dark Universe 31, 100785 (2021). https://doi.org/10.1016/j.dark.2021.100785
T. Vinutha, K.V. Vasavi, and K.S. Kavya, Int. J. Geom. Methods Mod. Phys. 20, 2350119 (2023). https://doi.org/10.1142/S0219887823501190
L.N. Granda, and A. Oliveros, Phys. Lett. B, 669, 275 (2008). https://doi.org/10.1016/j.physletb.2008.10.017
S. Kumar, and C.P. Singh, Astrophys. Space Sci. 312, 57 (2007). https://doi.org/10.1007/s10509-007-9623-4
C.P. Singh, S. Ram, and M. Zeyauddin, Astrophys. Space Sci. 315, 181 (2008). https://doi.org/10.1007/s10509-008-9811-x
J.P. Singh, and P.S. Baghel, Int. J. Theor. Phys. 48, 449 (2009). https://doi.org/10.1007/s10773-008-9820-0
Ö. Akarsu, and C.B. Kılınç, Gen. Relativ. Gravit. 42, 119 (2009). https://doi.org/10.1007/s10714-009-0821-y
Ö. Akarsu, and C.B. Kılınç, Gen. Relativ. Gravit. 42, 763 (2010). https://doi.org/10.1007/s10714-009-0878-7
K.S. Adhav, et al., Astrophys. Space Sci. 332, 497 (2011). https://doi.org/10.1007/s10509-010-0519-3
V.B. Johri, and K. Desikan, Gen. Relativ. Gravit. 26, 1217 (1994). https://doi.org/10.1007/BF02106714
K. Uddin, J.E. Lidsey, and R. Tavakol, Class. Quantum Gravity, 24, 3951 (2007). https://doi.org/10.1088/0264-9381/24/15/012
M. Sharif and M.F. Shamir, Class. Quantum Gravity, 26, 235020 (2009). https://doi.org//10.1088/0264-9381/26/23/235020
M. Sharif and M.F. Shamir, Mod. Phys. Lett. A, 25, 1281 (2010). https://doi.org/10.1142/S0217732310032536
S.D. Katore, et al., Commun. Theor. Phys. 62, 768 (2014). https://doi.org/10.1088/0253-6102/62/5/21
Y. Younesizadeh, and A. Rezaie, Int. J. Mod. Phys. A, 37, 2250040 (2022). https://doi.org/10.1142/S0217751X22500403
V. Sahni, et al., J. Phys. Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831
L. Perivolaropoulos and F. Skara, New Astron. Rev. 95, 101659 (2022). https://doi.org/10.1016/j.newar.2022.101659
P.A.R. Ade, et al., Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201525830
R.A. Knop, et al., Astrophys. J. 598, 102 (2003). https://doi.org/10.1086/378560
V.U.M. Rao, and D. Neelima, Eur. Phys. J. Plus, 128, 35 (2013). https://doi.org/10.1140/epjp/i2013-13035-y
Planck Collaboration, et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910
G.C. Samanta, Int. J. Theor. Phys. 52, 4389 (2013). https://doi.org/10.1007/s10773-013-1757-2
S. Sarkar, and C.R. Mahanta, Int. J. Theor. Phys. 52, 1482 (2013). https://doi.org/10.1007/s10773-012-1468-0
C. Zhang, et al., Res. Astron. Astrophys. 14, 1221 (2014). https://doi.org/10.1088/1674-4527/14/10/002
J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D, 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001
M. Moresco, et al., J. Cosmol. Astropart. Phys. 006 (2012). https://doi.org/10.1088/1475-7516/2012/08/006
M. Moresco, et al., J. Cosmol. Astropart. Phys. 014 (2016). https://dx.doi.org/10.1088/1475-7516/2016/05/014
A.L. Ratsimbazafy, et al., Mon. Not. R. Astron. Soc. 467, 3239 (2017). https://doi.org/10.1093/mnras/stx301
S. Capozziello, S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 781, 99 (2018). https://doi.org/10.1016/j.physletb.2018.03.064
V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831
U. Alam, et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003). https://doi.org/10.1103/PhysRevD.68.127501
Y.B. Wu, et al., Gen. Relativ. Gravit. 39, 653 (2007). https://doi.org/10.1007/s10714-007-0412-8
A.Y. Shaikh, Eur. Phys. J. Plus, 138, 301 (2023). https://doi.org/10.1140/epjp/s13360-023-03931-4
J. Sadeghi, A.R. Amani, and N. Tahmasbi, Astrophys. Space Sci. 348, 559 (2013). https://doi.org/10.1007/s10509-013-1579-y
Copyright (c) 2025 A.Y. Shaikh, A.P. Jenekar, S.M. Shingne

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



