Evolution of Kantowski-Sachs Universe with Renyi Holographic Dark Energy

  • T. Chinnappalanaidu Department of Mathematics, Vignan’s Institute of Information Technology (Autonomous), Visakhapatnam, India https://orcid.org/0000-0001-6902-2820
  • S. Srivani Madhu Department of Mathematics, Vignan’s Institute of Information Technology (Autonomous), Visakhapatnam, India https://orcid.org/0009-0002-2640-3011
  • M. Vijaya Santhi Department of Applied Mathematics, Andhra University, Visakhapatnam, India https://orcid.org/0000-0002-0050-3033
  • N. Sri Lakshmi Sudha Rani Department of Applied Mathematics, Andhra University, Visakhapatnam, India; Department of Humanities and Sciences, Teegala Krishna Reddy Engineering College, Hyderabad, India https://orcid.org/0009-0009-9593-954X
  • A. Krishna Rao Department of Mathematics, Government Degree College, Chodavaram, Andhrapradesh, India https://orcid.org/0000-0003-2786-9526
Keywords: Kantowski-Sachs metric, Anisotropic models, General scalar-tensor theory, Renyi holographic dark energy, Dark energy

Abstract

By considering generalized scalar tensor theory, as the gravitational theory, we have investigated the dynamical evolution of the homogeneous and anisotropic Kantowski-Sachs space in the presence of Renyi holographic dark energy. To obtain the solution for this model, we have derived the field equations and we have also analyzed the various physical and geometrical parameters of the model, such as deceleration, jerk, EoS, EoS plane, statefinder pair, density, squared speed of sound and the Om-diagnostic. It is shown from these parameters that the model is very much stable, projecting a quintessence nature and also, obtained model depicts the ΛCDM model. Our observations and conclusions from the constructed model are in good agreement with the recent studies.

Downloads

Download data is not yet available.

References

I. Bars, and J. Terning, Extra Dimensions in Space and Time, (Springer, NY, 2010). https://doi.org/10.1007/978-0-387-77638-5

P.A.R. Ade, et al., Astronomy & Astrophysics, 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

F. Zwicky, Astrophys. J. 83, 23 (1936). https://doi.org/10.1086/143697

F. Zwicky, Astrophys. J. 86, 217 (1937). https://doi.org/10.1086/143864

V.C. Rubin, and W.K. Ford, Astrophys. J. 159, 379 (1970). https://doi.org/10.1086/150317

R.V. Marttens, et al., Phys. Dark Uni. 28, 100490 (2020). https://doi.org/10.1016/j.dark.2020.100490

N. Aghanim, et al., Astro. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

S. Alam, et al., Astronomical Society, 470, 2617 (2017). https://doi.org/10.1093/mnras/stx721

P. Horava, and D. Minic, Phys. Rev.Lett. 85, 1610 (2000). https://doi.org/10.1103/PhysRevLett.85.1610

S.D. Thomas, Phys. Rev. Lett. 89, 081301 (2002). https://doi.org/10.1103/PhysRevLett.89.081301

S.D.H. Hsu, Phys. Lett. B, 594, 13 (2004). https://doi.org/10.1016/j.physletb.2004.05.020

S. Wang, et al., Phys. repo. 696, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.003

A.G. Cohen, et al., Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

B. Guberina, et al., J. Cosm. Astro. Phys. 2007, 012 (2007). https://doi.org/10.1088/1475-7516/2007/01/012

L. Susskind, J. Math.Phys. 36, 6377 (1995). https://doi.org/10.1063/1.531249

M. Li, Phys. Lett. B, 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

S. Nojiri, and S.D. Odintsov, Gen. Rel. Grav. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6

S. Nojiri, and S.D. Odintsov, Eur. Phys. J. C, 77, 528 (2017). https://doi.org/10.1140/epjc/s10052-017-5097-x

A.S. Jahromi, et al., Phys. Lett. B, 780, 21 (2018). https://doi.org/10.1016/j.physletb.2018.02.052

C. Tsallis, and L.J.L. Cirto, Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

H. Moradpour, et al., Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

M. Tavayef, et al., Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

H. Moradpour, et al., Phys. Lett. B, 783, 82 (2018). https://doi.org/10.1016/j.physletb.2018.06.040

S. Abe, Phys. Rev. E, 63, 061105 (2001). https://doi.org/10.1103/PhysRevE.63.061105

A. Majhi, Phys. Lett. B, 775, 32 (2017). https://doi.org/10.1016/j.physletb.2017.10.043

T.S. Biro, and V.G. Czinner, Phys. Lett. B, 726, 861 (2013). https://doi.org/10.1016/j.physletb.2013.09.032

V.G. Czinner, and H. Iguchi, Phys. Lett. B, 752, 306 (2016). https://doi.org/10.1016/j.physletb.2015.11.061

N. Komatsu, Eur. Phys. J. C, 77, 229 (2017). https://doi.org/10.1140/epjc/s10052-017-4800-2

H. Moradpour, et al., Phys. Rev. D, 96, 123504 (2017). https://doi.org/10.1103/PhysRevD.96.123504

A. Renyi, ”On Measures of Entropy and Information,” in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, (Berkley, 1961). pp. 547-561.

R.G. Cai, et al., Class. Quantum Grav. 26, 155018 (2009). https://doi.org/10.1088/0264-9381/26/15/155018

S. Chunlen, and P. Rangdee, (2020). https://arxiv.org/abs/2008.13730

U.Y.D. Prasanthi, and Y. Aditya, Res.Phys. 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

U.K. Sharma, and V.C. Dubey, New Astronomy, 80, 101419 (2020). https://doi.org/10.1016/j.newast.2020.101419

V.C. Dubey, et al., Astrophys. Space Sci. 365, 129 (2020). https://doi.org/10.1007/s10509-020-03846-x

V.C. Dubey, and U.K. Sharma, New Astronomy, 86, 101586 (2021). https://doi.org/10.1016/j.newast.2021.101586

A.A. Mamon, et al., Eur. Phys.J. C, 80, 974 (2020). https://doi.org/10.1140/epjc/s10052-020-08546-y

A.A. Mamon, et al., Eur. Phys. J. 136, 134 (2021). https://doi.org/10.1140/epjp/s13360-021-01130-7

U.K. Sharma, et al., Int. J. Mod.Phys. D, 30, 2150021 (2021). https://doi.org/10.1142/S0218271821500218

U.K. Sharma, and V.C. Dubey, Int. J.Mod.Phys. D, 19, 2250010 (2022). https://doi.org/10.1142/S0219887822500104

M.V. Santhi, and T. Chinnappalanaidu, New Astronomy, 92, 101725 (2022). https://doi.org/10.1016/j.newast.2021.101725

M.V. Santhi, et al., Ind. J. Phys. 98, 3393 (2024). https://doi.org/10.1007/s12648-023-03051-w

C.W. Misner, et al., Gravitation, (W.H. Freeman and Company, New York, 1973). URL

R.D. Inverno, Introducing Einstein’s Relativity, (Oxford University Press, Oxford, 1998). URL

A.R. Liddle, An Introduction to Modern Cosmology, (Wiley and Sons, Chichester, 2015). URL

A.R. Liddle, and D.H. Lyth, Cosmological Inflation and Large-Scale Structure, (Cambridge University Press, Cambridge, 2000).

https://doi.org/10.1017/CBO9781139175180

C.W. Misner, Astrophys. J. 151 431 (1968). https://doi.org/10.1086/149448

R.K. Kantowski, and R.K. Sachs, J. Math. Phys. 7, 443 (1966). https://doi.org/10.1063/1.1704952

E. Ghorani, and Y. Heydarzade, Eur.Phys. J. C, 81, 557 (2021). https://doi.org/10.1140/epjc/s10052-021-09355-7

M.V. Santhi, and T.C. Naidu, Indian J. Phys. 96, 953 (2022). https://doi.org/10.1007/s12648-020-01983-1

G. Oliveira-Neto, et al., Brazil. J. Phys. 52, 130 (2022). https://doi.org/10.1007/s13538-022-01137-0

U.Y.D. Prasanthi, and Y. Aditya, Phys. Dark Uni. 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782

A.A. Shaikh, and D. Chakraborty, J. Geom. Phys. 160, 103970 (2021). https://doi.org/10.1016/j.geomphys.2020.103970

M. Altunbas, J. Geom. 113, 40 (2022). https://doi.org/10.1007/s00022-022-00655-1

K.J. Nordtvedt, Astrophys J. 161, 1059 (1970). https://doi.org/10.1086/150607

J. Schwinger, Particles, Sources and Fields, (Addison-Wesley, Reading, 1970). https://archive.org/details/particlessources0001schw

P. Jordan, in: Schwerkraft und Weltall, (Friedrich Vieweg and Sohn, Braunschweig, 1955). pp.207-213.

C.H. Brans, and R.H. Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

V.U.M. Rao, and D. Neelima, Iran. J.Phys. Res. 14(3), 35 (2014). https://ijpr.iut.ac.ir/article 1085a67b4dc9c472767d094a4c561fd7475f.pdf?lang=en

V. U. M. Rao., D. Neelima, Int. Sch. Res. Notices. 2013, 174741 (2013). http://dx.doi.org/10.1155/2013/174741

V.U.M. Rao, and D. Neelima, Int. Sch. Res. Notices. 2013, 759274 (2013). https://doi.org/10.1155/2013/759274

V.U.M. Rao, and D. Neelima, J. Theor. Appl. Phys. 7, 50 (2013). https://doi.org/10.1186/2251-7235-7-50

A.R. Solomon, and M. Trodden, J. Cosmo. Astro. Phys. 02, 031 (2018). https://doi.org/10.1088/1475-7516/2018/02/031

Q. Huang, et al., Anna. Phys. 399, 124 (2018). https://doi.org/10.1016/j.aop.2018.09.014

J. Bloomfield, J. Cosmol. Astropart. Phys. 12, 044 (2013). https://doi.org/10.1088/1475-7516/2013/12/044

M. L´opez, et al., J. Cosmo. Astro. Phys. 2021, (2021). https://doi.org/10.1088/1475-7516/2021/10/021

R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

M.V. Sahni, et al., Phys. Rev. D, 78, 103502 (2008). https://doi.org/10.1103/PhysRevD.78.103502

M.V. Sahni, et al., J. Exp.The.l Phys. Let. 77(5), 201 (2003). https://doi.org/10.1134/1.1574831

U. Alam, et al., Mon. Not. R. Astron.Soc. 344(4), 1057 (2003). https://doi.org/10.1046/j.1365-8711.2003.06871.x

Published
2025-06-09
Cited
How to Cite
Chinnappalanaidu, T., Madhu, S. S., Santhi, M. V., Rani, N. S. L. S., & Rao, A. K. (2025). Evolution of Kantowski-Sachs Universe with Renyi Holographic Dark Energy. East European Journal of Physics, (2), 159-172. https://doi.org/10.26565/2312-4334-2025-2-16