Thermodynamics of Homogeneous and Isotropic Universe for Various Dark Energy Conditions
Abstract
The thermodynamic properties of homogeneous and isotropic universe for various dark energy conditions with decaying cosmological term Λ(t) are investigated. To obtain the explicit solution of Einstein’s field equations, we have considered a linearly varying deceleration parameter in the form of q =-αt + m - 1 with α and m as scalar constants. We have constrained the model parameters H0 and m as 68.495 km/s/Mpc and 1.591 respectively by bounding the derived model with combined pantheon compilation of SN Ia and H(z) data sets. Furthermore, we have studied the time varying dark energy states for two different assumptions i) Λ = Λ1t-2 and ii) Λ ꭀ [R(t)]−2n. For a specific assumption, our models indicate a dark energy like behaviour in in open, flat and closed space - time geometry. The temperature and entropy density of the model remain positive for both the cases i) Λ = Λ1t-2 and ii) Λ ꭀ [R(t)]−2n. Some physical properties of the universe are also discussed.
Downloads
References
J.A.S. Lima, A.S.M. Germano, and L.R.W. Abramo, Phys. Rev. D, 53, 4287 (1996). https://doi.org/10.1103/PhysRevD.53.4287
S. Permutter, et al., Nature, 391, 51 (1998). https://doi.org/10.1038/34124
A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. of Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X
B. Ratra, M.S. Vogeley, Publ. Astron. Soc. Pacific, 120(865), 235 (2008). https://doi.org/10.1086/529495
J.A. Frieman, M.S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145243
H.K. Jassal, J.S. Bagla, and T. Padmanabhan, Mon. Not. R. Astron. Soc. 405, 2639 (2010). https://doi.org/10.1111/j.1365-2966.2010.16647.x
S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1
I. Zlatev, L. Wang, P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999). https://doi.org/10.1103/PhysRevLett.82.896
Y. Chen, Z.H. Zhu, J. S. Alcaniz, and Y. Gong, Astrophys. J. 711, 439 (2010). https://doi.org/10.1088/0004-637X/711/1/439
L. Amendola, Phys. Rev. D, 62, 043511 (2000). https://doi.org/10.1103/PhysRevD.62.043511
G. Caldera-Cabral, R. Maartens, and L.A. Ureña-López, Phys. Rev. D, 79, 063518 (2009). https://doi.org/10.1103/PhysRevD.79.063518
I. Prigogine, J. Geheniau, E. Gunzig, and P. Nardone, Proc. Natl. Acad. Sci. 85, 7428 (1988).
H. Moradpour, N. Sadeghnezhad, S. Ghaffari, and A. Jahan, Adv. High Energy Phys. 2017, 9687976 (2017). https://doi.org/10.1155/2017/9687976
G.C. Samanta, R. Myrzakulov, and P. Shah, Zeitschrift für Naturforsch. A, 72, 365 (2017). https://doi.org/10.1515/zna-2016-0472
S.H. Shekh, S. Arora, V.R. Chirde, and P.K. Sahoo, Int. J. Geom. Methods Mod. Phys. 17, 2050048 (2020). https://doi.org/10.1142/S0219887820500486
M. Jamil, D. Momeni, M. Raza, and R. Myrzakulov, Eur. Phys. J. C, 72, 1999 (2012). https://doi.org/10.1140/epjc/s10052-012-1999-9
Ö. Akarsu, and T. Dereli, Int. J. Theor. Phys. 51, 612 (2012). https://doi.org/10.1007/s10773-011-0941-5
Ö. Akarsu, T. Dereli, S. Kumar, and L. Xu, Euro. Phys. J Plus, 129, 22 (2014). https://doi.org/10.1140/epjp/i2014-14022-6
R.N. Patra, A.K. Sethi, B. Nayak, and R.R. Swain, New Astron. 66, 74 (2019). https://doi.org/10.1016/j.newast.2018.08.001
S.K.J. Pacif, Euro. Phys. J. Plus, 135, 792 (2020). https://doi.org/10.1140/epjp/s13360-020-00769-y
S.W. Hawking, and G.F.R. Ellis, The Large Scale Structure of Space-time, (Press Syndicate of the University of Cambridge, New York, 1973).
R. Schoen, and S.T. Yau, Commun. Math. Phys. 79, 231 (1981). https://doi.org/10.1007/BF01942062
S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, Rep. Prog. Phys. 79, 096901 (2016). https://doi.org/10.1088/0034-4885/79/9/096901
P.J.E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559
T. Padmanabhan, Phys. Rep. 380, 235 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0
E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D, 15, 1753 (2006). http://dx.doi.org/10.1142/S021827180600942X
M. Li, X.D. Li, S. Wang, and Y. Wang, Front. Phys. 8, 828 (2013). https://doi.org/10.1007/s11467-013-0300-5
S. Weinberg, Sources and Detection of Dark Matter and Dark Energy in the universe: The cosmological constant problem, (Springer, 2001), pp. 18–26.
V. Sahni, Classical Quantum Gravity, 19, 3435 (2002). https://doi.org/10.1088/0264-9381/19/13/304
J. Garriga, and A. Vilenkin, Phys. Rev. D, 64, 023517 (2001). https://doi.org/10.1103/PhysRevD.64.023517
J.A. Frieman, M.S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145243
S. Nojiri, and S.D. Odintsov, Phys. Rep. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001
R. Caldwell, and M. Kamionkowski, Annu. Rev. Astron. Astrophys. 59, 397 (2009). https://doi.org/10.1146/annurev-nucl-010709-151330
Ö Akarsu, and C.B. Killinc, Gen. Relativ. Gravit. 42, 763 (2010). https://doi.org/10.1007/s10714-009-0878-7
S. Kumar, and A.K. Yadav, Mod. Phys. Lett. A, 26, 647 (2011). https://doi.org/10.1142/S0217732311035018
A.K. Yadav, Astrophys. Space Sci. 335, 565 (2011). https://doi.org/10.1007/s10509-011-0745-3
A.K. Yadav, and L. Yadav, Int. J. Theor. Phys. 50, 218, (2011). https://doi.org/10.1007/s10773-010-0510-3
S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 70, 103522 (2004). https://doi.org/10.1103/PhysRevD.70.103522
S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D, 71, 063004 (2005). https://doi.org/10.1103/PhysRevD.71.063004
S. Nojiri, and S.D. Odintsov, Gen. Relativ. Gravit. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6
S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003
J.C. Carvalho, J.A.S. Lima, and I. Waga, Phys. Rev. D, 46, 2404 (1992). https://doi.org/10.1103/PhysRevD.46.2404
J.M. Salim, and I. Waga, Class. Quant. Grav. 10, 1767 (1993). https://doi.org/10.1088/0264-9381/10/9/018
M.S. Berman, Phys. Rev. D, 43, 1075 (1991). https://doi.org/10.1103/PhysRevD.43.1075
A.K. Yadav, Int. J. Theor. Phys. 49, 1140 (2010). https://doi.org/10.1007/s10773-010-0295-4
A.K. Yadav, Astrophys. and Space Sc. 361, 1 (2016).
G.K. Goswami, A.K. Yadav, and B. Mishra, Mod. Phys. Lett. A, 35, 2050224 (2020). https://doi.org/10.1142/S0217732320502247
H. Amirhashchi, A.K. Yadav, N. Ahmad, and V. Yadav, Phys. Dark Uni. 36, 101043 (2022). https://doi.org/10.1016/j.dark.2022.101043
G.K. Goswami, M. Mishra, A.K. Yadav, and A. Pradhan, Mod. Phys. Lett. A, 33, 2050086 (2020). https://doi.org/10.1142/S0217732320500868
S. Kumar, and C.P. Singh, Gen. Relativ. Grav. 43, 1427 (2011). https://doi.org/10.1007/s10714-010-1125-y
E. Abdalla, et al., J. High Energy Astrophys. 34, 49 (2022). https://doi.org/10.1016/j.jheap.2022.04.002
E.D. Valentino, et al., Astropart. Phys. 131, 102605 (2021). https://doi.org/10.1016/j.astropartphys.2021.102605
E.D. Valentino, et al., Astropart. Phys. 131, 102607 (2021). https://doi.org/10.1016/j.astropartphys.2021.102607
E.D. Valentino, et al., Astropart. Phys. 131, 102604 (2021). https://doi.org/10.1016/j.astropartphys.2021.102604
E.D. Valentino, et al., Astropart. Phys. 131, 102606 (2021). https://doi.org/10.1016/j.astropartphys.2021.102606
A.S. Adil, U. Mukhopadhyay, A.A. Sen, and S. Vagnozzi, JCAP 2023(10), 072 (2023). https://doi.org/10.1088/1475-7516/2023/10/072
R.C Nunes, S. Vagnozzi, S. Kumar, E.Di Valentino, and O. Mena, Phys. Rev. D, 105, 123506 (2022). https://doi.org/10.1103/PhysRevD.105.123506
E.D. Valentino, S. Gariazzo, O. Mena, and S. Vagnozzi, JCAP 2020(7), 045 (2020). https://doi.org/10.1088/1475-7516/2020/07/045
D.M. Scolnic, et al., Astrophys. J. 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb
G.S. Sharov, and V.O. Vasiliev, Mathematical Modelling and Geometry 6, 1 (2018). https://mmg.tversu.ru/images/publications/2018-611.pdf
P. Biswas, P. Roy, and R. Biswas, https://doi.org/10.48550/arXiv.1908.00408
A.K. Yadav, et al., J. High Energy Astrophys. 43, 114 (2024). https://doi.org/10.1016/j.jheap.2024.06.012
S.M. Carroll, Spacetime and geometry: An introduction to general relativity, (Carlifonia, USA, 2004)
M. Visser, "Lorentzian Wormholes: From Einstein to Hawking," in: AIP Series in Computational and Applied Mathematical Physics, (American Institute of Physics, 1995).
Copyright (c) 2025 Neeru Goyal, Anil Kumar Yadav, Tensubam Alexander Singh, Aditya Sharma Ghrera, Asem Jotin Meitei, Kangujam Priyokumar Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).