Thermodynamics of Homogeneous and Isotropic Universe for Various Dark Energy Conditions

Keywords: FRW Model, Homogeneous, Thermodynamics, Pantheon, Dark energy

Abstract

The thermodynamic properties of homogeneous and isotropic universe for various dark energy conditions with decaying cosmological term Λ(t) are investigated. To obtain the explicit solution of Einstein’s field equations, we have considered a linearly varying deceleration parameter in the form of q =-αt + m - 1 with α and m as scalar constants. We have constrained the model parameters H0 and m as 68.495 km/s/Mpc and 1.591 respectively by bounding the derived model with combined pantheon compilation of SN Ia and H(z) data sets. Furthermore, we have studied the time varying dark energy states for two different assumptions i) Λ = Λ1t-2 and ii) Λ ꭀ [R(t)]−2n. For a specific assumption, our models indicate a dark energy like behaviour in in open, flat and closed space - time geometry. The temperature and entropy density of the model remain positive for both the cases i) Λ = Λ1t-2 and ii) Λ ꭀ [R(t)]−2n. Some physical properties of the universe are also discussed.

Downloads

References

J.A.S. Lima, A.S.M. Germano, and L.R.W. Abramo, Phys. Rev. D, 53, 4287 (1996). https://doi.org/10.1103/PhysRevD.53.4287

S. Permutter, et al., Nature, 391, 51 (1998). https://doi.org/10.1038/34124

A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. of Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

B. Ratra, M.S. Vogeley, Publ. Astron. Soc. Pacific, 120(865), 235 (2008). https://doi.org/10.1086/529495

J.A. Frieman, M.S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145243

H.K. Jassal, J.S. Bagla, and T. Padmanabhan, Mon. Not. R. Astron. Soc. 405, 2639 (2010). https://doi.org/10.1111/j.1365-2966.2010.16647.x

S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

I. Zlatev, L. Wang, P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999). https://doi.org/10.1103/PhysRevLett.82.896

Y. Chen, Z.H. Zhu, J. S. Alcaniz, and Y. Gong, Astrophys. J. 711, 439 (2010). https://doi.org/10.1088/0004-637X/711/1/439

L. Amendola, Phys. Rev. D, 62, 043511 (2000). https://doi.org/10.1103/PhysRevD.62.043511

G. Caldera-Cabral, R. Maartens, and L.A. Ureña-López, Phys. Rev. D, 79, 063518 (2009). https://doi.org/10.1103/PhysRevD.79.063518

I. Prigogine, J. Geheniau, E. Gunzig, and P. Nardone, Proc. Natl. Acad. Sci. 85, 7428 (1988).

H. Moradpour, N. Sadeghnezhad, S. Ghaffari, and A. Jahan, Adv. High Energy Phys. 2017, 9687976 (2017). https://doi.org/10.1155/2017/9687976

G.C. Samanta, R. Myrzakulov, and P. Shah, Zeitschrift für Naturforsch. A, 72, 365 (2017). https://doi.org/10.1515/zna-2016-0472

S.H. Shekh, S. Arora, V.R. Chirde, and P.K. Sahoo, Int. J. Geom. Methods Mod. Phys. 17, 2050048 (2020). https://doi.org/10.1142/S0219887820500486

M. Jamil, D. Momeni, M. Raza, and R. Myrzakulov, Eur. Phys. J. C, 72, 1999 (2012). https://doi.org/10.1140/epjc/s10052-012-1999-9

Ö. Akarsu, and T. Dereli, Int. J. Theor. Phys. 51, 612 (2012). https://doi.org/10.1007/s10773-011-0941-5

Ö. Akarsu, T. Dereli, S. Kumar, and L. Xu, Euro. Phys. J Plus, 129, 22 (2014). https://doi.org/10.1140/epjp/i2014-14022-6

R.N. Patra, A.K. Sethi, B. Nayak, and R.R. Swain, New Astron. 66, 74 (2019). https://doi.org/10.1016/j.newast.2018.08.001

S.K.J. Pacif, Euro. Phys. J. Plus, 135, 792 (2020). https://doi.org/10.1140/epjp/s13360-020-00769-y

S.W. Hawking, and G.F.R. Ellis, The Large Scale Structure of Space-time, (Press Syndicate of the University of Cambridge, New York, 1973).

R. Schoen, and S.T. Yau, Commun. Math. Phys. 79, 231 (1981). https://doi.org/10.1007/BF01942062

S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, Rep. Prog. Phys. 79, 096901 (2016). https://doi.org/10.1088/0034-4885/79/9/096901

P.J.E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

T. Padmanabhan, Phys. Rep. 380, 235 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0

E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D, 15, 1753 (2006). http://dx.doi.org/10.1142/S021827180600942X

M. Li, X.D. Li, S. Wang, and Y. Wang, Front. Phys. 8, 828 (2013). https://doi.org/10.1007/s11467-013-0300-5

S. Weinberg, Sources and Detection of Dark Matter and Dark Energy in the universe: The cosmological constant problem, (Springer, 2001), pp. 18–26.

V. Sahni, Classical Quantum Gravity, 19, 3435 (2002). https://doi.org/10.1088/0264-9381/19/13/304

J. Garriga, and A. Vilenkin, Phys. Rev. D, 64, 023517 (2001). https://doi.org/10.1103/PhysRevD.64.023517

J.A. Frieman, M.S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145243

S. Nojiri, and S.D. Odintsov, Phys. Rep. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001

R. Caldwell, and M. Kamionkowski, Annu. Rev. Astron. Astrophys. 59, 397 (2009). https://doi.org/10.1146/annurev-nucl-010709-151330

Ö Akarsu, and C.B. Killinc, Gen. Relativ. Gravit. 42, 763 (2010). https://doi.org/10.1007/s10714-009-0878-7

S. Kumar, and A.K. Yadav, Mod. Phys. Lett. A, 26, 647 (2011). https://doi.org/10.1142/S0217732311035018

A.K. Yadav, Astrophys. Space Sci. 335, 565 (2011). https://doi.org/10.1007/s10509-011-0745-3

A.K. Yadav, and L. Yadav, Int. J. Theor. Phys. 50, 218, (2011). https://doi.org/10.1007/s10773-010-0510-3

S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 70, 103522 (2004). https://doi.org/10.1103/PhysRevD.70.103522

S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D, 71, 063004 (2005). https://doi.org/10.1103/PhysRevD.71.063004

S. Nojiri, and S.D. Odintsov, Gen. Relativ. Gravit. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6

S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003

J.C. Carvalho, J.A.S. Lima, and I. Waga, Phys. Rev. D, 46, 2404 (1992). https://doi.org/10.1103/PhysRevD.46.2404

J.M. Salim, and I. Waga, Class. Quant. Grav. 10, 1767 (1993). https://doi.org/10.1088/0264-9381/10/9/018

M.S. Berman, Phys. Rev. D, 43, 1075 (1991). https://doi.org/10.1103/PhysRevD.43.1075

A.K. Yadav, Int. J. Theor. Phys. 49, 1140 (2010). https://doi.org/10.1007/s10773-010-0295-4

A.K. Yadav, Astrophys. and Space Sc. 361, 1 (2016).

G.K. Goswami, A.K. Yadav, and B. Mishra, Mod. Phys. Lett. A, 35, 2050224 (2020). https://doi.org/10.1142/S0217732320502247

H. Amirhashchi, A.K. Yadav, N. Ahmad, and V. Yadav, Phys. Dark Uni. 36, 101043 (2022). https://doi.org/10.1016/j.dark.2022.101043

G.K. Goswami, M. Mishra, A.K. Yadav, and A. Pradhan, Mod. Phys. Lett. A, 33, 2050086 (2020). https://doi.org/10.1142/S0217732320500868

S. Kumar, and C.P. Singh, Gen. Relativ. Grav. 43, 1427 (2011). https://doi.org/10.1007/s10714-010-1125-y

E. Abdalla, et al., J. High Energy Astrophys. 34, 49 (2022). https://doi.org/10.1016/j.jheap.2022.04.002

E.D. Valentino, et al., Astropart. Phys. 131, 102605 (2021). https://doi.org/10.1016/j.astropartphys.2021.102605

E.D. Valentino, et al., Astropart. Phys. 131, 102607 (2021). https://doi.org/10.1016/j.astropartphys.2021.102607

E.D. Valentino, et al., Astropart. Phys. 131, 102604 (2021). https://doi.org/10.1016/j.astropartphys.2021.102604

E.D. Valentino, et al., Astropart. Phys. 131, 102606 (2021). https://doi.org/10.1016/j.astropartphys.2021.102606

A.S. Adil, U. Mukhopadhyay, A.A. Sen, and S. Vagnozzi, JCAP 2023(10), 072 (2023). https://doi.org/10.1088/1475-7516/2023/10/072

R.C Nunes, S. Vagnozzi, S. Kumar, E.Di Valentino, and O. Mena, Phys. Rev. D, 105, 123506 (2022). https://doi.org/10.1103/PhysRevD.105.123506

E.D. Valentino, S. Gariazzo, O. Mena, and S. Vagnozzi, JCAP 2020(7), 045 (2020). https://doi.org/10.1088/1475-7516/2020/07/045

D.M. Scolnic, et al., Astrophys. J. 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb

G.S. Sharov, and V.O. Vasiliev, Mathematical Modelling and Geometry 6, 1 (2018). https://mmg.tversu.ru/images/publications/2018-611.pdf

P. Biswas, P. Roy, and R. Biswas, https://doi.org/10.48550/arXiv.1908.00408

A.K. Yadav, et al., J. High Energy Astrophys. 43, 114 (2024). https://doi.org/10.1016/j.jheap.2024.06.012

S.M. Carroll, Spacetime and geometry: An introduction to general relativity, (Carlifonia, USA, 2004)

M. Visser, "Lorentzian Wormholes: From Einstein to Hawking," in: AIP Series in Computational and Applied Mathematical Physics, (American Institute of Physics, 1995).

Published
2025-03-03
Cited
How to Cite
Goyal, N., Yadav, A. K., Singh, T. A., Ghrera, A. S., Meitei, A. J., & Singh, K. P. (2025). Thermodynamics of Homogeneous and Isotropic Universe for Various Dark Energy Conditions. East European Journal of Physics, (1), 44-58. https://doi.org/10.26565/2312-4334-2025-1-04