Graphene Oxide and Reduced Graphene Oxide as Hole Transport Layers for Improved Efficiency in Fullerene-Based Bulk Heterojunction Organic Solar Cells: A Numerical Simulation Study

  • Denet Davis Optoelectronics Device Simulation Research Lab, Department of Physics, Christ College (Autonomous), Irinjalakuda, Thrissur, Kerala, India; University of Calicut, Calicut, Kerala, India https://orcid.org/0000-0001-6673-2499
  • K.S. Sudheer Optoelectronics Device Simulation Research Lab, Department of Physics, Christ College (Autonomous), Irinjalakuda, Thrissur, Kerala, India; University of Calicut, Calicut, Kerala, India https://orcid.org/0000-0002-9019-4405
Keywords: Bulk heterojunction organic solar cell, One Dimensional Solar Cell Capacitance Simulator, Graphene oxide, Reduced graphene oxide, Enhanced efficiency

Abstract

A growing area of research in recent years has focused on improving the efficiency of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) fullerene-based bulk heterojunction organic solar cells (BHJOSC) using poly 3-hexylthiophene-2,5-diyl (P3HT) as the donor and graphene derivatives as the hole transport layer (HTL). Graphene derivatives, mainly graphene oxide (GO) and reduced graphene oxide (RGO), possess similar exceptional characteristics as that of graphene, and are good candidates as HTL in P3HT:PCBM based BHJOSC’s. In this work, we use, One-Dimensional Solar Cell Capacitance Simulator (SCAPS1D) for the extensive and detailed study of two configurations, namely ITO/GO/P3HT:PCBM/Al and ITO/RGO/P3HT: PCBM/Al. Both configurations are optimized, and enhanced efficiencies are achieved by varying electrical input parameters of the device. Thereafter, design, simulation and analysis of different device combinations are done using nine distinct ETL’s and three metal electrodes. ITO/GO/P3HT:PCBM/LiF/Ca and ITO/RGO/ P3HT:PCBM/LiF/Ca gave improved efficiencies of 8.00% and 12.00% respectively. Then, the influence of varying donor density of Lithium Fluoride (LiF), and effect of varying work function of Indium Tin oxide (ITO), on the device performance of these two devices is studied. A record efficiency of 16.47%, is attained for increased donor density of LiF in ITO/RGO/P3HT:PCBM/LiF/Ca configuration.

Downloads

References

H. Kang, et al., Adv. Mater. 28, 7821 (2016). https://doi.org/10.1002/adma.201601197

G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science, 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789

T. Fukuda, et al., Phys. Status Solidi - Rapid Res. Lett. 5, 229 (2011). https://doi.org/10.1002/pssr.201105232

L. Lu, et al., Chem. Rev. 115, 12666 (2015). https://doi.org/10.1021/acs.chemrev.5b00098

B. Kadem, A. Hassan, and W.J. Cranton, J. Mater. Sci. Mater. Electron. 27, 7038 (2016). https://doi.org/10.1007/s10854-016-4661-8

S. Bichave, et al., Materials Today: Proceedings, (2023). https://doi.org/10.1016/j.matpr.2023.01.190

H. Xu, et al., J. Mater. Chem. A, 8, 11478 (2020). https://doi.org/10.1039/D0TA03511D

S. Park, et al., Adv. Mater. 32, 1 (2020).

A.M. Mir, F. Bashir, F.A. Khanday, F. Zahoor, M. Hanif, and Z. May, IEEE Access, 12, 10961 (2024). https://doi.org/10.1109/ACCESS.2024.3354163

I. Masood, M.P. Singh, and M. Amir, "Analysis of Different Layers Thicknesses on the Performance of Organic Solar Cells," in: 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), (Aligarh, 2023). pp. 1-5.

M. Palewicz, A. Sikora, T. Piasecki, E. Gacka, P. Nitschke, P. Gnida, B. Jarząbek, and T. Gotszalk, Energies, 16, 4741 (2023). https://doi.org/10.3390/en16124741

D. Davis, M.S. Shamna, K.S. Nithya, and K.S. Sudheer, "Graphene as a hole transport layer for enhanced performance of P3HT:PCBM bulk heterojunction organic solar cell: a numerical simulation study," in: IOP Conference Series: Materials Science and Engineering, vol. 1248, (Jalandhar, Punjab, 2022), pp. 012011.

G.R. Nishad, R.B. Younus, and P. Singh, "Applications of PEDOT: PSS in Solar Cells," in: Materials for Solar Cell Technologies, II 103, 40 (2021), pp 40-76. https://doi.org/10.21741/9781644901410-3

K.S. Ram, et al., Nanomater. 11, 209 (2021). https://doi.org/10.3390/nano11010209

J. Healey, Conductive polymer films as electrodes in organic solar cells, (Memorial University of Newfoundland, 2020).

D. Ompong, Designing thin film solar cells for optimum photovoltaic performance, (Charles Darwin University, Australia, 2017).

F. Hakim, and M.K. Alam, "Improvement of photo-current density of P3HT: PCBM bulk heterojunction organic solar cell using periodic nanostructures," in: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), (IEEE, 2017), pp. 170-174.

F. Hakim, and Md.K. Alam, Sol. Energy, 191, 300 (2019). https://doi.org/10.1016/j.solener.2019.08.073

H.M. Rad, F. Zhu, and J. Singh, J. Appl. Phys. 124, 083103 (2018). https://doi.org/10.1063/1.5031062

Q. Zheng, et al., Sol. energy mater. sol. cells, 95, 2200 (2011). https://doi.org/10.1016/j.solmat.2011.03.024

J. Cameron, and P.J. Skabara, Mater. Horiz. 7, 1759 (2020). https://doi.org/10.1039/C9MH01978B

M.A. Velasco-Soto, et al., Carbon, 93, 967 (2015). https://doi.org/10.1016/j.carbon.2015.06.013

A. Iwan, and A. Chuchmała, Prog. Polym. Sci. 37, 1805 (2012). https://doi.org/10.1016/j.progpolymsci.2012.08.001

Y. Zhu, et al., Adv. Mater. 22, 3906 (2010). https://doi.org/10.1002/adma.201001068

R. Tarcan, et al., J. Mater. Chem. C, 8, 1198 (2020). https://doi.org/10.1039/C9TC04916A

N.O. Weiss, et al., Adv. Mater. 24, 5782 (2012). https://doi.org/10.1002/adma.201201482

K.I. Bolotin, et al., Solid State Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

K.I. Bolotin, "Electronic transport in graphene: Towards high mobility," in: Graphene, (Woodhead Publishing, 2014), pp. 199 227.

X. Xu, et al., Chem. Soc. Rev. 47, 3059 (2018). https://doi.org/10.1039/C7CS00836H

M. Raji, N. Zari, Q.A. El Kacem, and R. Bouhfid, Functionalized graphene nanocomposites and their derivatives, (Elsevier, 2019).

E. Singh, and H.S. Nalwa, RSC Adv. 5, 73575 (2015). https://doi.org/10.1039/C5RA11771B

B.V.R.S. Subramanyam, et al., J. Renew. Sustain. Energy, 12, 054701 (2020). https://doi.org/10.1063/5.0021208

J. Liu, et al., Adv. Mater. 26, 786 (2014). https://dx.doi.org/10.1002/adma.201302987

N.T. Ho, et al., Phys. Status Solidi Appl. Mater. Sci. 211, 1873 (2014). https://doi.org/10.1002/pssa.201330611

A. Van Dijken, et al., Organic Electronics, 4, 131 (2003). https://doi.org/10.1016/j.orgel.2003.08.007

J.M. Yun, et al., Adv. Mater. 23, 4923 (2011). https://doi.org/10.1002/adma.201102207

Y. Gao, et al., Appl. Phys. Lett. 97, 203306 (2010). https://doi.org/10.1063/1.3507388

A. Ali, et al., Curr. Appl. Phys. 18, 599 (2018). https://doi.org/10.1016/j.cap.2018.02.016

T.A. Amollo, G.T. Mola, and V.O. Nyamori, Sol. Energy, 171, 83 (2018): https://doi.org/10.1016/j.solener.2018.06.068

H.P. Kim, A.R.M. Yusoff, and J. Jang, Sol. Energy Mater. Sol. Cells, 110, 87 (2013).

N.M.S. Hidayah, et al., AIP Conf. Proc. 1892, 150002 (2017). https://doi.org/10.1063/1.5005764

Y.-J. Jeon, et al., Sol. Energy Mater. Sol. Cells, 105, 96 (2012). https://doi.org/10.1016/j.solmat.2012.05.024

A. Negash, A.M. Demeku, and L.H. Molloro, New J. Chem. 46, 13001 (2022). https://doi.org/10.1039/D2NJ01974D

Xu Xiang, et al., Carbon Letters, 32, 557 (2022). https://doi.org/10.1007/s42823-021-00287-6

T. Tene, et al., Front. Chem. 11, (2023). https://doi.org/10.3389/fchem.2023.1267199

Y. Wang, et al., Mater. Today, 21, 186 (2018). https://doi.org/10.1016/j.mattod.2017.10.008

S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, and M. Chhowalla, ACS Nano, 4, 3169 (2010). https://doi.org/10.1021/nn100551j

J. Liu, et al., Adv. Mater. 26, 786 (2014). https://doi.org/10.1002/adma.201302987

D.D. Nguyen, et al., Nanotechnology, 22, 295606 (2011). https://doi.org/10.1088/0957-4484/22/29/295606

Z. Fakharan, L. Naji, and K. Madanipour, Org. Electron. 76, 105459 (2020). https://doi.org/10.1016/j.orgel.2019.105459

J.H. Lee, et al., Org. Electron. 30, 302 (2016). https://doi.org/10.1016/j.orgel.2016.01.003

H. Park, P.R. Brown, V. Bulović, and J. Kong, Nano Lett. 12, 133 (2012). https://doi.org/10.1021/nl2029859

G.A. Chamberlain, Sol. Cells, 8, 47 (1983). https://doi.org/10.1016/0379-6787(83)90039-X

M. Akbi, "A method for measuring the photoelectric work function of contact materials versus temperature," in: IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(8), (2014), pp. 1293-1302. https://doi.org/10.1109/TCPMT.2014.2328661

M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS manual, (University of Gent, 2023).

S.B. Hacène, T. Benouaz, and T. Benouaz, Phys. Status Solidi (a), 211, 862 (2014). https://doi.org/10.1002/pssa.201330320

B.M. Omer, "Influence of characteristic energy of the valence band tail on performance of P3HT:PCBM bulk-heterojunction solar cell: AMPS-1D simulation study," in: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), (IEEE, 2014), pp. 1770 1775.

E.K. Chiew, M. Yahaya, and A. P. Othman, International Journal of Computational Materials Science and Engineering, 01(01), 1250004 (2012). https://doi.org/10.1142/S2047684112500042

G.A. Nowsherwan, et al., Nanomater. 12, 1767 (2022). https://doi.org/10.3390/nano12101767

A.S. Khune, et al., J. Electron. Mater. 52, 8108 (2023). https://doi.org/10.1007/s11664-023-10711-4

L. Sygellou, et al., J. Phys. Chem. C, 120, 281 (2016). https://doi.org/10.1021/acs.jpcc.5b09234

C. Yuwen, et al., Mater. Res. Express, 6, 0950b4 (2019). https://doi.org/10.1088/2053-1591/ab149f

A. Daraie, and A. Fattah, Opt. Mater. 109, 110254 (2020). https://doi.org/10.1016/j.optmat.2020.110254

W. Abdelaziz, et al., Sol. Energy, 211, 375 (2020). https://doi.org/10.1016/j.solener.2020.09.068

W. Abdelaziz, et al., Opt. Mater. 91, 239 (2019). https://doi.org/10.1016/j.optmat.2019.03.023

M.Q. Khokhar, et al., Mater. Sci. Semicond. Process. 134, 105982 (2021). https://doi.org/10.1016/j.mssp.2021.105982

S.-F. Wang, et al., J. Phys. Chem. C, 116, 1650 (2012). https://doi.org/10.1021/jp2045146

M.Q. Khokhar, et al., Energies, 13, 1635 (2020). https://doi.org/10.3390/en13071635

Jacob, Mohan V. Science and Technology of Advanced Materials 6 (2005): 944-949.

H. Niu, et al., Dalton Transactions, 50, 6477 (2021). https://doi.org/10.1039/D1DT00344E

V. Srikant, and D.R. Clarke, J. Appl. Phys. 83, 5447 (1998). https://doi.org/10.1063/1.367375

B. Hussain, et al., Electronics, 8(2), 238 (2019). https://doi.org/10.3390/electronics8020238

A. Umar, et al., Micromachines, 13(12), 2073 (2022). https://doi.org/10.3390/mi13122073

K.S. Nithya, and K.S. Sudheer, Opt. Mater. 123, 111912 (2022). https://doi.org/10.1016/j.optmat.2021.111912

M. Dadashbeik, D. Fathi, and M. Eskandari, Sol. Energy, 207, 917 (2020). https://doi.org/10.1016/j.solener.2020.06.102

M.M. Shabat, G. Zoppi, "Simulation on the perovskite-based solar cell with graphene derivative," in: The 8th International Engineering Conference on Renewable Energy & Sustainability, (Gaza, Palestine, 2023).

Published
2025-03-03
Cited
How to Cite
Davis, D., & Sudheer, K. (2025). Graphene Oxide and Reduced Graphene Oxide as Hole Transport Layers for Improved Efficiency in Fullerene-Based Bulk Heterojunction Organic Solar Cells: A Numerical Simulation Study . East European Journal of Physics, (1), 217-232. https://doi.org/10.26565/2312-4334-2025-1-23