Morphological Studies of (Ge2)1-X(ZnSe)X Solid Solutions

  • A.Sh. Razzokov Urgench State University, Urgench, Uzbekistan
  • A.S. Saidov Physical-Technical Institute NPO “Physics-Sun of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
  • M.A. Shonazarova Leipzig University, Leipzig, Germany
  • J.A. Razzakov Urgench State University, Urgench, Uzbekistan
  • D.E. Koshchanova Urgench State University, Urgench, Uzbekistan https://orcid.org/0009-0003-0927-2475
Keywords: Epitaxial layer, Heterostructure, Solid solution, Dislocation, Single-crystal

Abstract

Single-crystal films of the (Ge2)1-x(ZnSe)x solid solution from a limited tin solution-melt in the temperature range from 1023 K to 803 K at a cooling rate of 1-1.5 K/min on an EPOC installation were grown on Ge substrates and GaAs. The gap between the substrates was 0.65÷1.2 mm. It was established that the lowest values of dislocation density (ND=2·104÷105 cm-2) were recorded in epitaxial films at TNC = 893 K. Technological conditions for obtaining GaAs- (Ge2)1-x(ZnSe)x heterostructure with a smooth boundary have been achieved. Film substrate and the supercooling temperature was ΔT = 7.2°C.

Downloads

References

Y. Wang, et al., “Bandgap broadly tunable GaZnSeAs alloy nanowires,” Physical Chemistry Chemical Physics, 15(8), 2912 2916 (2013). https://doi.org/10.1039/C2CP43718J

W. Huang, et al., “Composition-dependent perfect band gap tuning of ZnS1-xSex solid solutions for efficient photocatalysis,” Journal of Physics and Chemistry of Solids, 130, 41-45 (2019). https://doi.org/10.1016/j.jpcs.2019.02.008

S. Schorr, et al., “Electronic band gap of Zn2x (CuIn)1−xX2 solid solution series (X= S, Se, Te),” Journal of alloys and compounds, 414(1-2), 26-30 (2006). http://dx.doi.org/10.1016/j.jallcom.2005.07.014

M. Kaji, et al., “Liquid-phase epitaxy of GaAs-ZnSe Ga2Se3 alloy crystals on a ZnSe substrate,” Journal of crystal growth, 178(3), 242-245 (1997). https://doi.org/10.1016/S0022-0248(96)01187-6

M.S. Saidov, A.S. Saidov, and A.Sh. Razzakov, “Liquid Phase Epitaxy Photoluminescence and Photoelectrical Properties of Variband (Ge2)1-x(ZnSe)x Layers,” in: Tenth International Workshop on Physics of Semiconductor Devices, (India, 1999), pp. 1424-1427.

S. Fujiwara, Y. Namikawa, M. Irikura, K. Matsumoto, T. Kotani, and T. Nakamura, “Growth of dislocation-free ZnSe single crystal by CVT method,” Journal of Crystal Growth, 219(4), 353-360 (2000). https://doi.org/10.1016/S0022-0248(00)00671-0

Q. Zhang, H. Li, Y. Ma, and T. Zhai, “ZnSe nanostructures: Synthesis, properties and applications,” Progress in Materials Science, 83, 472-535 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.005

D.W. Parent, A. Rodriguez, J.E. Ayers, and F.C. Jain. “Photoassisted MOVPE grown (n)ZnSe/(p+)GaAs heterojunction solar cells,” Solid-State Electronics, 47(4), 595-599 (2003). https://doi.org/10.1016/S0038-1101(02)00334-9

Y. Li, D. Yang, W. Nan, L. Zhang, H. Yu, B. Zhou, and Z. Hu, “The crystal growth of ZnSe by the traveling heater method with the accelerated crucible rotation technique,” Journal of Crystal Growth, 589, 126684 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126684

G.B. Stringfellow, “Epitaxial growth of metastable semiconductor alloys,” Journal of Crystal Growth, 564, 126065 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126065

A. Heurtel, A. Marbeuf, H. Tews, and Y. Marfaing, “Liquid phase epitaxy of ZnSe in Sn: Calculation of the ternary phase diagram and electronic properties,” Journal of Crystal Growth, 59(1-2), 167-171 (1982). https://doi.org/10.1016/0022-0248(82)90319-0

V.P. Maslov, A.V. Fedorenko, V.P. Kladko, O.Y. Gudymenko, K.M. Bozhko, and N.M. Zashchepkina, “Structure and electrical resistance of the passivating ZnSe layer on Ge,” Semiconductor Physics, Quantum Electronics & Optoelectronics, 24(4), 425 430 (2021). https://doi.org/10.15407/spqeo24.03.425

M. Rubinstein, “Solubilities of gallium arsenide in metallic solvents,” J. Electrochem. Soc. 113, 752 (1966). https://doi.org/10.1149/1.2424107

J.P. Fleurial, and A. Borshchevsky, “Si-Ge-metal ternary phase diagram calculations,” J. Electrochem. Soc. 137, 2928 (1990). https://doi.org/10.1149/1.2087101

A.S. Saidov, et al., “Liquid-phase epitaxy of solid solutions (Ge2)1− x (ZnSe)x,” Materials chemistry and physics, 68(1), 1-6 (2001). http://dx.doi.org/10.1016/S0254-0584(00)00230-3

A.S. Saidov, and A.S. Razzokov, “Obtaining and morphological studies of epitaxial layers of the Si1-xGex solid solution,” Siberian Physical Journal, 15(2), 84-91 (2020). https://doi.org/10.25205/2541-9447-2020-15-2-84-91

A.S. Saidov, et al., “Investigation of the Crystallographic Perfection and Photoluminescence Spectrum of the Epitaxial Films of (Si2)1-x(GaP)x (0≤x≤1) Solid Solution, Grown on Si and GaP Substrates with the Crystallographic Orientation (111),” Advances in Condensed Matter Physics, 1-8 (2021). http://dx.doi.org/10.1155/2021/3472487

Published
2025-03-03
Cited
How to Cite
Razzokov, A., Saidov, A., Shonazarova, M., Razzakov, J., & Koshchanova, D. (2025). Morphological Studies of (Ge2)1-X(ZnSe)X Solid Solutions. East European Journal of Physics, (1), 256-259. https://doi.org/10.26565/2312-4334-2025-1-28