Scale Modeling of the Influence of Multiple Localized Defects of Metal Surface on Optical Ellipsometry Results
Abstract
The work is devoted to the problem of ellipsometric studies of real surfaces and considers the case when surface inhomogeneities are individual localized defects or conglomerates with a size comparable to the wavelength of the probing radiation. Such inhomogeneities lead to angular dependences of ellipsometric parameters that have a non-classical form and cannot be described using conventional well-known models of homogeneous planar layers. This work focuses on the influence of conglomerates of localized defects on the angular dependences of ellipsometric parameters and serves as a continuation of earlier studies in which single localized defects were considered. The dependence of the degree of influence of the distance between defects on the ellipsometric parameters is examined. The parameter “critical distance” between defects is introduced, beyond which they can be considered as localized, and estimates of this parameter for the considered configurations are provided.
Downloads
References
R.M.A. Azzam, and N.M. Bashara, Ellipsometry and polarized light (North Holland, Amsterdam, 1999).
H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).
H.G. Tompkins, and W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley, Chichester, 1999).
S. Zollner, F. Abadizaman, C. Emminger, and N. Samarasingha, Adv. Opt. Technol., 11, 117 (2022), https://doi.org/10.1515/aot-2022-0016
B. Hajduk, H. Bednarski, and B. Trzebicka, J. Phys. Chem. B, 124(16), 3229 (2020). https://doi.org/10.1021/acs.jpcb.9b11863
S. Bairagi, C.-L. Hsiao, R. Magnusson, J. Birch, J.P. Chu, F.-G. Tarntair, R.-H. Horng, K. Järrendahl, Opt. Mater. Express, 12, 3284 (2022), https://doi.org/10.1364/OME.462668
M.S. Gangwar, P. Agarwal, Phys. Scr. 98, 105944 (2023). https://doi.org/10.1088/1402-4896/acf796
W. Leigh, S. Mandal, J.A. Cuenca, D. Wallis, A.M. Hinz, R.A. Oliver, E.L.H. Thomas, and O. Williams, ACS Omega, 8, 30442 (2023). https://doi.org/10.1021/acsomega.3c03609
K. Ungeheuer, K.W. Marszalek, M. Mitura-Nowak, et al., Sci Rep. 13, 22116 (2023). https://doi.org/10.1038/s41598-023-49133-x
A. Lemire, K. Grossklaus, T.E. Vandervelde, IEEE Dataport, (2024). https://dx.doi.org/10.21227/xhrd-ny57
D. Schmidt, E. Schubert, and M. Schubert, in: Ellipsometry at the Nanoscale, edited by M. Losurdo and K. Hingerl (Springer Berlin Heidelberg, 2013), pp. 341-410.
S. Bian, and O. Arteaga, Opt. Express, 31(12), 19632-19645 (2023). https://doi.org/10.1364/oe.490197
W. Yu, C. Cui, H. Li, S. Bian, and X. Chen, Photonics 9(9), 621 (2022), https://doi.org/10.3390/photonics9090621
N.C. Bruce, O.G. Rodríguez-Herrera, C.N. Ramírez, and M. Rosete-Aguilar, Appl. Opt. 60(5), 1182 (2021). https://doi.org/10.1364/AO.410003
T. V. Vorburger, and K. C. Ludema, Appl. Opt. 19(4), 561 (1980). https://doi.org/10.1364/AO.19.000561
M.G. Tchéré, S. Robert, J. Dutems, H. Bruhier, B. Bayard, Y. Jourlin, and D. Jamon, Appl. Opt. 63(14), 3876 (2024). https://doi.org/10.1364/AO.520109
G.G. Politano, and C. Versace, Spectrosc. J. 1(3), 163 (2023). https://doi.org/10.3390/spectroscj1030014
A.I. Belyaeva, A.A. Galuza, P.A. Khaimovich, et al., Phys. Metals Metallogr. 117, 1170 (2016). https://doi.org/10.1134/S0031918X16090027
A.I. Belyaeva, V.Kh. Alimov, A.A. Galuza, K. Isobe, V.G. Konovalov, I.V. Ryzhkov, A.A. Savchenko, et al., J. Nucl. Mater. 413(1), 5 (2011), https://doi.org/10.1016/j.jnucmat.2011.03.026
A.I. Belyaeva, A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.A. Savchenko, Ye.M. Kuleshov, and S.Yu. Serebriansky, Telecommunications and Radio Engineering 74(2), 171 (2015). https://doi.org/10.1615/TelecomRadEng.v74.i2.60
N.L. Dmitruk, A.V. Goncharenko, and E.F. Venger, Optics of Small Particles and Composite Media, (Naukova Dumka, Kyiv, 2009).
O.V. Angelsky, and P.P. Maksimyak, Optical Engineering, 34(4), 973 (1995). https://doi.org/10.1117/12.197181
X. Liu, Q. Chen, J. Zeng, Y.J. Cai, and C.H. Liang, Opto-Electron Sci. 2, 220024 (2023). https://doi.org/10.29026/oes.2023.220024
M. W. Hyde, J. Opt. Soc. Am. A, 39(12), 2383 (2022). https://doi.org/10.1364/JOSAA.465457
S. Mizrakhy, in: IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON, Kyiv, Ukraine, 2017), pp. 198-201, https://doi.org/10.1109/UKRCON.2017.8100473
I.A. Tishchenko, and A.I. Nosich, IEEE Microw. Mag. 4(4), 32 (2003), https://doi.org/10.1109/MMW.2003.1266065
A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.I. Belyaeva, and Y.M. Kuleshov, IEEE Trans. THz Sci. Technol. 6(2), 183 (2016), https://doi.org/10.1109/TTHZ.2016.2525732
Copyright (c) 2024 Oleksii Haluza, Ivan Kolenov, Iryna Gruzdo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).