Constraining Logarithmic f(R, T) Model Using Dark Energy Density Parameter Ω_Λ and Hubble parameter H_0

Keywords: f(R,T) gravity, Dark Energy

Abstract

Of many extended theories of gravity, f(R, T) gravity has gained reasonable interest in recent times as it provides interesting results in cosmology. Logarithmic corrections in modified theories of gravity have been studied extensively. In this work, we considered logarithmic correction to the trace term T and took the functional form as f(R, T) = R+16πGαlnT where α is a free parameter. The free parameter is constrained using dark energy density parameter ΩΛ and Hubble parameter H0. The lower bound is found to be α ≥ −9.85×10−29. The cosmological implications are also studied.

Downloads

Download data is not yet available.

References

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., ”Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517, 565 (1999). https://doi.org/10.1086/307221

E.J. Copeland, M. Sami, and S. Tsujikawa, ”Dynamics of dark energy,” International Journal of Modern Physics D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. Banday, et al., ”Planck 2018 results-vi. cosmological parameters,” Astronomy and Astrophysics 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

S. Weinberg, ”The cosmological constant problem,” Reviews of modern physics, 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

A.A. Starobinsky, ”Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations,” Physics Letters B, 117, 175-178 (1982). https://doi.org/10.1016/0370-2693(82)90541-X

S. Nojiri, and S.D. Odintsov, ”Modified gauss–bonnet theory as gravitational alternative for dark energy,” Physics Letters B, 631, 1-6 (2005). https://doi.org/10.1016/j.physletb.2005.10.010

S. Nojiri, and S.D. Odintsov, ”Modified gravity and its reconstruction from the universe expansion history,” Journal of Physics: Conference Series, 66, 012005 (2007). https://doi.org/10.1088/1742-6596/66/1/012005

M. Sharif, and A. Ikram, ”Energy conditions in f(G,T) gravity,” The European Physical Journal C, 76, 640 (2016). https://doi.org/10.1140/epjc/s10052-016-4502-1

T. Harko, F.S. Lobo, S. Nojiri, and S.D. Odintsov, ”f(R,T) gravity,” Physical Review D, 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

J.B. Jim´enez, L. Heisenberg, and T. Koivisto, ”Coincident general relativity,” Physical Review D, 98, 044048 (2018). https://doi.org/10.1103/PhysRevD.98.044048

Y. Xu, G. Li, T. Harko, and S.-D. Liang, ”f (q,t) gravity,” The European Physical Journal C, 79, 708 (2019). https://doi.org/10.1140/epjc/s10052-019-7207-4

S. Nojiri, S. Odintsov, and V. Oikonomou, ”Modified gravity theories on a nutshell: inflation, bounce and late-time evolution,” Physics Reports, 692, 1-104 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

S. Bhattacharjee, J. Santos, P. Moraes, and P. Sahoo, ”Inflation in f(R,T) gravity,” The European Physical Journal Plus, 135, 576 (2020). https://doi.org/10.1140/epjp/s13360-020-00583-6

M. Gamonal, ”Slow-roll inflation in f(R,T) gravity and a modified Starobinsky-like inflationary model,” Physics of the Dark Universe, 31, 100768 (2021). https://doi.org/10.1016/j.dark.2020.100768

B. Deb, and A. Deshamukhya, ”Inflation in f(R,T) gravity with double-well potential,” International Journal of Modern Physics A, 37, 2250127 (2022). https://doi.org/10.1142/S0217751X22501275

C.-Y. Chen, Y. Reyimuaji, and X. Zhang, ”Slow-roll inflation in f(R,T) gravity with a RT mixing term,” Physics of the Dark Universe, 38, 101130 (2022). https://doi.org/10.1016/j.dark.2022.101130

S. Bhattacharjee, and P. Sahoo, ”Constraining f(R,T) gravity from the dark energy density parameter ΩΛ,” Gravitation and Cosmology, 26, 281-284 (2020). https://doi.org/10.1134/S0202289320030032

M. Houndjo, and O.F. Piattella, ”Reconstructing f(R,T) gravity from holographic dark energy,” International Journal of Modern Physics D, 21, 1250024 (2012). https://doi.org/10.1142/S0218271812500241

A. Pasqua, S. Chattopadhyay, and I. Khomenko, ”A reconstruction of modified holographic ricci dark energy in f(R,T) gravity, Canadian Journal of Physics, 91, 632 (2013). https://doi.org/10.1139/cjp-2013-0016

J. Singh, and N. Sharma, ”Bianchi type-ii dark energy model in f(R,T) gravity, International Journal of Theoretical Physics, 53, 1424-1433 (2014). https://doi.org/10.1007/s10773-013-1939-y

D. Reddy, R.S. Kumar, and T.P. Kumar, ”Bianchi type-III dark energy model in f(R,T) gravity,” International Journal of Theoretical Physics, 52, 239-245 (2013). https://doi.org/10.1007/s10773-012-1325-1

R. Zaregonbadi, M. Farhoudi, and N. Riazi, ”Dark matter from f(R,T) gravity, Physical Review D, 94, 084052 (2016). https://doi.org/10.1103/PhysRevD.94.084052

N. Godani, and G.C. Samanta, ”Wormhole modeling in f(R,T)gravity with minimally-coupled massless scalar field,” International Journal of Modern Physics A, 35, 2050186 (2020). https://doi.org/10.1142/S0217751X20501869

A.K.M. Shweta, and U.K. Sharma, ”Traversable wormhole modelling with exponential and hyperbolic shape functions in I framework,” International Journal of Modern Physics A, 35(25), 2050149 (2020). https://doi.org/10.1142/S0217751X20501493

Published
2024-09-02
Cited
How to Cite
Deb, B., & Deshamukhya, A. (2024). Constraining Logarithmic f(R, T) Model Using Dark Energy Density Parameter Ω_Λ and Hubble parameter H_0. East European Journal of Physics, (3), 21-26. https://doi.org/10.26565/2312-4334-2024-3-02