Anticipating Pressure Changes in Halides under Compression

  • Abhay Prakash Srivastava Department of Physics, R. R. Institute of Modern Technology, Lucknow, India
  • Brijesh Kumar Pandey Department of Physics & Material Science, MMM University of Technology, Gorakhpur (UP), India https://orcid.org/0000-0002-7999-4743
  • Mukesha Upadhyay Department of Physics, North Eastern Regional Institute of Science and Technology (NERIST), Nirjuli (Itanagar) Arunachal Pradesh, India
Keywords: Equation of state (EOS), Vinet EOS, Murnaghan EOS, Holzapfel EOS, Born-Mie EOS, Birch-Murnaghan EOS, New EOS (NEOS), Halides

Abstract

A new equation of state (NEOS) for Halides has been developed using the theory of lattice potential and the concept of volume dependence of the short-range force constant. The derivation of this equation of state involved the use of the third-order approximation of the lattice potential. A comparative analysis was conducted between the isothermal equations of state, including Vinet EOS, Murnaghan EOS, Holzapfel EOS, Born-Mie EOS, Birch-Murnaghan EOS, and the newly derived NEOS. The NEOS was used to analyze the compression behavior of Halides, and it was found that Vinet EOS and NEOS agreed with the experimental data for Halides up to high compression. However, Murnaghan EOS, Born-Mie EOS, Holzapfel EOS, and Birch-Murnaghan EOS are usually less sensitive to calculating pressure at high compression. It was also observed that for some Halides, such as NaBr and NaI, Vinet EOS could not produce results consistent with experimental findings. In contrast, NEOS consistently produced results that matched the experimental findings for all Halides samples, unequivocally demonstrating its reliability and accuracy.

Downloads

Download data is not yet available.

References

C.K. Dixit, S. Srivastava, P. Singh, and A.K. Pandey, Nano-Structures & Nano-Objects, 38, 101121, (2024). https://doi.org/10.1016/j.nanoso.2024.101121

A.K. Pandey, C.K. Dixit, S. Srivastava, P. Singh, and S. Tripathi, National Academy Science Letters, (2023). https://doi.org/10.1007/s40009-023-01358-0

A.G. Davydov, and N.K. Tkachev, J. Phys. Chem. A, 126(23), 3774, (2022). https://doi.org/10.1021/acs.jpca.2c01614

J. Hu, J. Sun, X. Meng, and L.C. Cai, Acta. Physica Sinica, 59(5), 3384 (2010). https://ir.lzu.edu.cn/handle/262010/116974

A. Pandey, S. Srivastava, and C.K. Dixit, Iranian journal of Science, 47, 1877 (2023). https://doi.org/10.1007/s40995-023-01535-2

R.L. Jaiswal, B.K. Pandey, D. Mishra, and H. Fatma, Int. J. Thermodyn. 24, 1 (2021). https://doi.org/10.5541/ijot.869865

P. Singh, B.K. Pandey, S. Mishra, and A.P. Srivastava, Computational Condensed Matter, 35, e00807 (2023). https://doi.org/10.1016/j.cocom.2023.e00807

B.K. Pandey, C.K. Singh, and A.K. Pandey, in: New Ideas Concerning Science and Technology, vol. 13, (2021). pp. 126-131. https://doi.org/10.9734/bpi/nicst/v13/8362D

P.K. Singh, Computational Condensed Matter, 31, e00678 (2022). https://doi.org/10.1016/j.cocom.2022.e00678

R. Gupta, and M. Gupta, Bulletin of Materials Science, 44, 218 (2021). https://doi.org/10.1007/s12034-021-02503-5

S. Srivastava, A.K. Pandey, and C.K. Dixit, Solid State Communication, 377, 115387 (2023). https://doi.org/10.1016/j.ssc.2023.115387

P. Dulari, International Journal of Mathematics and Physics, 10(2), 57 (2019). https://doi.org/10.26577/ijmph-2019-i2-9

F.D. Stacey, and P.M. Davis, Phys. Earth Planet. Inter. 142, 137 (2004). https://doi.org/10.1016/j.pepi.2004.02.003

M. Born, and K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University Press, New York, 1954).

J. Shanker, and S. Dixit, Phys. Status Solidi (a), 123, 17 (1991). https://doi.org/10.1002/pssa.2211230102

J. Shanker, S.S. Kushwah, and P. Kumar, Physica B: Condensed Matter, 239, 337 (1997). https://doi.org/10.1016/S0921-4526(97)00349-9

O.L. Anderson, J. Geophys. Res. 75, 2719 (1970). https://doi.org/10.1029/JB075i014p02719

B. J. Brennan, F.D. Stacey, J. Geophys. Res. 84, 5535 (1979). https://doi.org/10.1029/JB084iB10p05535

A. O L, Equation of State of Solids for Geophysics and Ceramic Science, (Oxford Univ. Press, New York, 1995).

B.W. Dodson, Phys. Rev. B, 35(6), 2619 (1987). https://doi.org/10.1103/PhysRevB.35.2619

F. Birch, J. Geophys. Res. 57(2), 227 (1952). https://doi.org/10.1029/JZ057i002p00227

J. Hama, K. Suito, and N. Kawakami, Phys. Rev. B, 39(5), 3351 (1989). https://doi.org/10.1103/PhysRevB.39.3351

M. Kumar, and S.S. Bedi, Journal of Physics and Chemistry of Solids, 57(1), 133 (1996). https://doi.org/10.1016/0022-3697(95)00150-6

J.H. Rose, J.R. Smith, and J. Ferrante, Phys. Rev. B, 28(4), 1835 (1983). https://doi.org/10.1103/PhysRevB.28.1835

O.L. Anderson, J. Phys. Chem. Solids, 58(2), 335 (1997). https://doi.org/10.1016/S0022-3697(96)00115-1

A.V. Singh, J.C. Sharma, and J. Shanker, Phys. B, 94(3), 331 (1978). https://doi.org/10.1016/0378-4363(78)90039-6

Y. Sato-Sorensen, J. Geophys. Res. 88(B4), 3543 (1983). https://doi.org/10.1029/JB088iB04p03543

Q. Liu, and Z.M. Niu, Int. J. Thermophys. 33, 2267 (2012). https://doi.org/10.1007/s10765-012-1288-8

K. Kholiya, J. Chandra, and S. Verma, The Scientific World Journal, 2014, 289353 (2014). http://dx.doi.org/10.1155/2014/289353

P.K. Singh, Indian Journal of Pure and Applied Physics, 48, 403 (2010).

M.A. Mohammed, and H.B. Mohammed, Advances in Condensed Matter Physics, 2023, 9518475 (2023). https://doi.org/10.1155/2023/9518475

R.W. Roberts, and C.S. Smith, J. Phys. Chem. Solids, 31, 619 (1970). https://doi.org/10.1016/0022-3697(70)90196-4

C.S. Smith, and L.S. Cain, J. Phys. Chem. Solids, 36, 205 (1975). https://doi.org/10.1016/0022-3697(75)90010-4

S.N. Vaidya, and G.C. Kennedy, J. Phys. Chem. Solids, 32, 951 (1971). https://doi.org/10.1016/S0022-3697(71)80340-2

Y.Sato-Sorensen, J. Geophys. Res. 88, 3543 (1983). https://doi.org/10.1029/JB088iB04p03543

Published
2024-09-02
Cited
How to Cite
Srivastava, A. P., Pandey, B. K., & Upadhyay, M. (2024). Anticipating Pressure Changes in Halides under Compression. East European Journal of Physics, (3), 333-339. https://doi.org/10.26565/2312-4334-2024-3-37