Comparison of 2D and 3D p-n Junction Differential Conductance and Diffusion Capacitance
Abstract
In the fabrication of 3D p-n junctions, doping or surface modification caused by ion injection changes the electrical properties and crystal structure of the semiconductor. In addition, as the size of the semiconductor device decreases, various quantum effects are gradually appearing in them. This shows that the scope of application of classical device theory is now limited. In recent years, two-dimensional (2D) materials with amazing atomically fine properties have attracted great interest. The electrostatic field properties of some 2D p-n junctions, such as WS2, MoS2, MoSe2, WSe2, and black phosphorus (BP), open the door to new possibilities for semiconductors. Changes in the diffusion capacitances and differential conductance’s of 2D p-n junctions under the influence of an microwave field, and the diffusion capacitances and differential conductance’s of 2D and 3D p-n junctions the change of conductivities under the influence of microwave field is compared.
Downloads
References
T. Yang, B. Zheng, Z. Xu, T. Wang, C. Pan, J. Zou, X. Zhang, et al., “Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions,” Nat. Commun. 8, 1906 (2017). https://doi.org/10.1038/s41467-017-02093-z
Z. Lou, Z. Liang, and G. Shen, “Photodetectors based on two dimensional materials,” Journal of Semiconductors, 37(9), 091001 (2016). https://doi.org/10.1088/1674-4926/37/9/091001
G. Gulyamov, U.I. Erkaboev, and A.G. Gulyamov, “Shubnikov–de Haas Oscillations in Semiconductors at the Microwave-Radiation Absorption,” Adv. Cond. Matter Phys. 2019, 3084631 (2019). https://doi.org/10.1155/2019/3084631
R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, anf X. Duan, “Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes,” Nano Letters, 14(10), 5590–5597 (2014). https://doi.org/10.1021/nl502075n
H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction,” Nature Nanotechnology, 10(8), 707–713 (2015). https://doi.org/10.1038/nnano.2015.112
F. Wang, L. Yin, Z.X. Wang, K. Xu, F.M. Wang, T.A. Shifa, and J. He, “Configuration-Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2,” Advanced Functional Materials, 26(30), 5499–5506 (2016). https://doi.org/10.1002/adfm.201601349
G. Gulyamov, G. Majidova, F. Muxitdinova, and S. Madumarova, “Changes in diodes with a pn-transition under the influence of microwave radiation,” AIP Conference Proceedings, 2700(1), 050008 (2023). https://doi.org/10.1063/5.0126385
G. Gulyamov, F. Mukhitdinova, and G. Majidova, “Changing the Voltage of the p-n Junction in a Magnetic Field,” e-Journal of Surface Science and Nanotechnology, 21(4), 273-277 (2023). https://doi.org/10.1380/ejssnt.2023-047
M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Letters, 14(8), 4785–4791 (2014). https://doi.org/10.1021/nl501962c
F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, and J. He, “Tunable GaTe-MoS2 van der Waals p–n Junctions with Novel Optoelectronic Performance,” Nano Letters, 15(11), 7558–7566 (2015). https://doi.org/10.1021/acs.nanolett.5b03291
C.H. Lee, G.H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nature Nanotechnology, 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150
Y.J. Zhang, T. Oka, R. Suzuki, J.T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science, 344(6185), 725–728 (2014). https://doi.org/10.1126/science.1251329
A. Pospischil, M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n-diode,” Nature Nanotech. 9, 257–261 (2014). https://doi.org/10.1038/nnano.2014.14
J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, et al., “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions,” Nature Nanotechnology, 9(4), 268–272 (2014). https://doi.org/10.1038/nnano.2014.26
M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus junctions defined by local electrostatic gating,” Nature Communications, 5(1), 4651 (2014). https://doi.org/10.1038/ncomms5651
D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu, P.M. Ajayan, and Z. Zhang, “Two-dimensional non-volatile programmable p–n junctions,” Nature Nanotechnology, 12(9), 901–906 (2017). https://doi.org/10.1038/nnano.2017.104
J.-W. Chen, S.-T. Lo, S.-C. Ho, S.-S. Wong, T.-H.-Y. Vu, X.-Q. Zhang, Y.-D. Liu, et al., “A gate-free monolayer WSe2 p-n-diode,” Nature Communications, 9, 3143 (2018). https://doi.org/10.1038/s41467-018-05326-x
Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, D. Yang, et al., “Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors,” ACS Nano, 11(10), 9854–9862 (2017). https://doi.org/10.1021/acsnano.7b03569
D. Xiang, T. Liu, J. Xu, J.Y. Tan, Z. Hu, B. Lei, Y. Zheng, et al., “Two-dimensional multibit optoelectronic memory with broadband spectrum distinction,” Nature Communications, 9(1), 2966 (2018). https://doi.org/10.1038/s41467-018-05397-w
Z. Hai, M.K. Akbari, Z. Wei, D. Cui, C. Xue, H. Xu, P.M. Heynderickx, et al., “Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices,” Beilstein Journal of Nanotechnology, 9, 2845–2854 (2018). https://doi.org/10.3762/bjnano.9.265
U.I. Erkaboev, G. Gulyamov, J.I. Mirzaev, and R.G. Rakhimov, “Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors,” International journal of modern physics B, 34(07), 2050052 (2020). https://doi.org/10.1142/S0217979220500526
J.O. Island, S.I. Blanter, M. Buscema, H.S.J. van der Zant, and A. Castellanos-Gomez, “Gate Controlled Photocurrent Generation Mechanisms in High-Gain In2Se3 Phototransistors,” Nano Letters, 15(12), 7853–7858 (2015). https://doi.org/10.1021/acs.nanolett.5b02523
G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, and J.I. Mirzaev, “On temperature dependence of longitudinal electrical conductivity oscillations in narrow-gap electronic semiconductors,” Journal of Nano-and Electronic Physics, 12(3), (2020). https://doi.org/10.21272/jnep.12(3).03012
E. Wu, Y. Xie, J. Zhang, H. Zhang, X. Hu, J. Liu, Ch. Zhou, et al., “Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation,” Science Advances, 5(5), eaav3430 (2019). https://doi.org/10.1126/sciadv.aav3430
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n-diodes in a monolayer dichalcogenide,” Nature Nanotechnology, 9(4), 262–267 (2014). https://doi.org/10.1038/nnano.2014.25
F.A. Chaves, P.C. Feijoo, D. Jiménez, “The 2D p-n-Junction Driven Out-of-Equilibrium,” Nanoscale Advances, 2, 3252-3262 (2020). https://doi.org/10.1039/D0NA00267D
R.A. Smith, Semiconductors, first ed. (Cambridge University Press, 1959).
G. Gulyamov, M.G. Dadamirzaev, and M.O. Kosimova, “Comparison of parameters of two-dimensional (2D) and three-dimensional (3D) pn-junction diodes,” Romanian Journal of Physics, 68, 603 (2023). https://rjp.nipne.ro/2023_68_1-2/RomJPhys.68.603.pdf
G. Gulyamov; M.G. Dadamirzayev; M.O. Qosimova; and S.R. Boydedayev, “Influence of deformation and light on the diffusion capacity and differential resistance of the p-n junction of a strong electromagnetic field,” AIP Conference Proceedings, 2700, 050013 (2023). https://doi.org/10.1063/5.0124926
Copyright (c) 2024 Muhammadjon G. Dadamirzaev, Mamura O. Kosimova, S.R. Boydedayev, Azamat S. Makhmudov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).