Enhancing Third-Generation Solar Cell Efficiency and Stability Through P-Type Silicon Integration: Process Analysis and Performance Evaluation
Abstract
Third-generation solar cells have emerged as a potential solution to the effectiveness and stability issues encountered in conventional solar technology. This study focuses on the characteristics of copper-zinc-tin-sulfide (CZTS) thin films inside this innovative architectural framework, which is an important step toward improving third-generation solar cells by incorporating a p-type silicon layer. This integrated method provides a versatile and manageable setting for film deposition, underscoring the effort put into creating high-quality CZTS thin films. Using X-ray diffraction (XRD), the study assessed the structural change of CZTS films after annealing, finding that kesterite phases were dominant. Images captured by a scanning electron microscope (SEM) reveal the microstructure and surface morphology of CZTS-coated Silicon nanowires (Si-NWs). A detailed analysis of the current-voltage characteristics provides evidence of the operational potential of the Si-NWs-CZTS coated solar cell. Significant performance parameters observed include a Voc value of 0.45 ± 0.02V, Isc value of 8.25 ± 0.30 mA/cm², FF value of 24 ± 2%, and η value of 1.0 ± 0.1%. The encouraging results indicate the capacity of using P-type silicon to enhance the performance of third-generation solar cells.
Downloads
References
J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, and A. Romeo, “Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review,” Progress in Materials Science, 110, 100619 (2020). https://doi.org/10.1016/j.pmatsci.2019.100619
L.V. Mercaldo, I. Usatii, and P.D. Veneri, “Advances in thin-film Si solar cells by means of SiOx alloys,” Energies, 9(3), 218 (2016). https://doi.org/10.3390/en9030218
M. Zellmeier, S. Kühnapfel, B. Rech, N.H. Nickel, and J. Rappich, “Enhanced stability of P3HT/poly‐crystalline Si thin film hybrid solar cells,” Physica Status Solidi (a), 213(7), 1904-1908 (2016). https://doi.org/10.1002/pssa.201532772
H.L. Zhang, T. Van Gerven, J. Baeyens, and J. Degrève, “Photovoltaics: Reviewing the European feed-in-tariffs and changing PV efficiencies and costs,” The Scientific World Journal, 2014, 404913 (2014). https://doi.org/10.1155/2014/404913
R. Pietruszka, B.S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, et al., “New efficient solar cell structures based on zinc oxide nanorods,” Solar Energy Materials and Solar Cells, 143, 99-104 (2015). https://doi.org/10.1016/j.solmat.2015.06.042
R. Pietruszka, R. Schifano, T.A. Krajewski, B.S. Witkowski, K. Kopalko, L. Wachnicki, E. Zielony et al., “Improved efficiency of n-ZnO/p-Si based photovoltaic cells by band offset engineering,” Solar Energy Materials and Solar Cells, 147, 164-170 (2016). https://doi.org/10.1016/j.solmat.2015.12.018
M.C. Beard, J.M. Luther, and A.J. Nozik, “The promise and challenge of nanostructured solar cells,” Nature nanotechnology, 9(12), 951-954 (2014). https://doi.org/10.1038/nnano.2014.292
A. Rao, and R.H. Friend, “Harnessing singlet exciton fission to break the Shockley-Queisser limit,” Nature reviews materials, 2(11), 1-12 (2017). https://doi.org/10.1038/natrevmats.2017.63
Y. Li, G. Xu, C. Cui, and Y. Li, “Flexible and semitransparent organic solar cells,” Advanced Energy Materials, 8(7), 1701791 (2018). https://doi.org/10.1002/aenm.201701791
A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, and Q. Qiao, “A strategic review on processing routes towards highly efficient perovskite solar cells,” Journal of Materials Chemistry A, 6(6), 2406-2431 (2018). https://doi.org/10.1039/C7TA08277K
E.H. Anaraki, A. Kermanpur, M.T. Mayer, L. Steier, T. Ahmed, S.-H. Turren-Cruz, J. Seo, et al., “Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells,” ACS Energy Letters, 3(4), 773-778 (2018). https://doi.org/10.1021/acsenergylett.8b00055
M. Saliba, J.‐P. Correa‐Baena, M. Grätzel, A. Hagfeldt, and A. Abate, “Perovskite solar cells: from the atomic level to film quality and device performance,” Angewandte Chemie International Edition, 57(10), 2554-2569 (2018). https://doi.org/10.1002/anie.201703226
E. Mirabi, F.A. Abarghuie, and R. Arazi, “Integration of buildings with third-generation photovoltaic solar cells: a review,” Clean Energy, 5(3), 505-526 (2021). https://doi.org/10.1093/ce/zkab031
M.E. Yeoh, and K.-Y. Chan. “A review on semitransparent solar cells for real-life applications based on dye-sensitized technology,” IEEE Journal of Photovoltaics, 11(2), 354-361 (2021). https://doi.org/10.1109/JPHOTOV.2020.3047199
Z. Mubarak, N.M. Nursam, S. Shobih, J. Hidayat, and D. Tahir, “A comparison of the utilization of carbon nanopowder and activated carbon as counter electrode for monolithic dye-sensitized solar cells (DSSC),” Jurnal Elektronika dan Telekomunikasi, 18(1), 15-20 (2018). http://dx.doi.org/10.14203/jet.v18.15-20
V. Pramananda, T.A.H. Fityay, and E. Misran, “Anthocyanin as natural dye in DSSC fabrication: A review,” IOP Conference Series: Materials Science and Engineering, 1122(1), 012104 (2021). https://doi.org/10.1088/1757-899X/1122/1/012104
G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” Renewable and Sustainable Energy Reviews, 69, 705-718 (2017). https://doi.org/10.1016/j.rser.2016.11.198
A. Pallikkara, and K. Ramakrishnan, “Efficient charge collection of photoanodes and light absorption of photosensitizers: A review,” International Journal of Energy Research, 45(2), 1425-1448 (2021). https://doi.org/10.1002/er.5941
M.N. Mustafa, and Y. Sulaiman, “Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells,” Solar Energy, 215, 26-43 (2021). https://doi.org/10.1016/j.solener.2020.12.030
Yu Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani et al., “Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability,” ACS Energy Letters, 5(9), 2935-2944 (2020). https://doi.org/10.1021/acsenergylett.0c01421
Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, et al., “18% Efficiency organic solar cells,” Science Bulletin, 65(4), 272 275 (2020). https://doi.org/10.1016/j.scib.2020.01.001
J. Gao, W. Gao, X. Ma, Z. Hu, C. Xu, X. Wang, Q. An, et al., “Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers,” Energy & Environmental Science, 13(3), 958-967 (2020). https://doi.org/10.1039/C9EE04020J
M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, et al., “Over 13% efficiency ternary nonfullerene polymer solar cells with tilted up absorption edge by incorporating a medium bandgap acceptor,” Advanced Energy Materials, 8(30), 1801968 (2018). https://doi.org/10.1002/aenm.201801968
Z. Xiao, S. Yang, Z. Yang, J. Yang, H.‐L. Yip, F. Zhang, F. He, et al., “Carbon–Oxygen‐Bridged Ladder‐Type Building Blocks for Highly Efficient Nonfullerene Acceptors,” Advanced Materials, 31(45), 1804790 (2019). https://doi.org/10.1002/adma.201804790
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, et al. “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule, 3(4), 1140-1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
Q. An, J. Wang, W. Gao, X. Ma, Z. Hu, J. Gao, C. Xu, et al., “Alloy-like ternary polymer solar cells with over 17.2% efficiency,” Science Bulletin, 65(7), 538-545 (2020). https://doi.org/10.1016/j.scib.2020.01.012
Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, et al., “Single‐junction organic photovoltaic cells with approaching 18% efficiency,” Advanced Materials, 32(19), 1908205 (2020). https://doi.org/10.1002/adma.201908205
L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, et al., “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy & Environmental Science, 13(2), 635-645 (2020). https://doi.org/10.1039/C9EE03710A
Y. Lin, J. Wang, Z.‐G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, “An electron acceptor challenging fullerenes for efficient polymer solar cells,” Advanced materials, 27(7), 1170-1174 (2015). https://doi.org/10.1002/adma.201404317
Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, and J. Wang, “Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells,” ACS Energy Letters, 3(3), 555-561 (2018). https://doi.org/10.1021/acsenergylett.8b00100
X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, et al., “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy, 70, 104496 (2020). https://doi.org/10.1016/j.nanoen.2020.104496
P. Cheng, C. Yan, Y. Wu, J. Wang, M. Qin, Q. An, J. Cao, et al., “Alloy acceptor: superior alternative to PCBM toward efficient and stable organic solar cells,” Advanced Materials, 28(36), 8021-8028 (2016). https://doi.org/10.1002/adma.201602067
W. Gao, Q. An, M. Hao, R. Sun, J. Yuan, F. Zhang, W. Ma, et al., “Thick‐film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm,” Advanced Functional Materials, 30(10), 1908336 (2020). https://doi.org/10.1002/adfm.201908336
Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, K. Yang, Z. Wang, et al., “A critical review on semitransparent organic solar cells,” Nano Energy, 78, 105376 (2020). https://doi.org/10.1016/j.nanoen.2020.105376
S. Yang, A. Cannavale, D. Prasad, A. Sproul, and F. Fiorito, “Numerical simulation study of BIPV/T double-skin facade for various climate zones in Australia: Effects on indoor thermal comfort,” Building Simulation, 12, 51-67 (2019). https://doi.org/10.1007/s12273-018-0489-x
Y. Jiang, L. Qiu, E. J. Juarez-Perez, L.K. Ono, Z. Hu, Z. Liu, Z. Wu, et al., “Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation,” Nature Energy, 4(7), 585-593 (2019). https://doi.org/10.1038/s41560-019-0406-2
S.G. Hashmi, D. Martineau, M.I. Dar, T.T.T. Myllymäki, T. Sarikka, V. Ulla, S.M. Zakeeruddin, and M. Grätzel, “High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment,” Journal of Materials Chemistry A, 5(24), 12060-12067 (2017). https://doi.org/10.1039/C7TA04132B
C.R. Kagan, E. Lifshitz, E.H. Sargent, and D.V. Talapin, “Building devices from colloidal quantum dots,” Science, 353(6302), aac5523 (2016). https://doi.org/10.1126/science.aac5523
M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, and M.A. Loi, “Temperature dependent behaviour of lead sulfide quantum dot solar cells and films,” Energy & Environmental Science, 9(9), 2916-2924 (2016). https://doi.org/10.1039/C6EE01577H
H. Lee, H.-J. Song, M. Shim, and C. Lee, “Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing,” Energy & Environmental Science, 13(2), 404-431 (2020). https://doi.org/10.1039/C9EE03348C
K. Pal, K.B. Thapa, and A. Bhaduri, “A review on the current and future possibilities of copper-zinc tin sulfur thin film solar cell to increase more than 20% efficiency,” Advanced Science, Engineering and Medicine, 10(7-8), 645-652 (2018). https://doi.org/10.1166/asem.2018.2225
D. Sharma, R. Mehra, and B. Raj, “Comparative analysis of photovoltaic technologies for high efficiency solar cell design,” Superlattices and Microstructures, 153, 106861 (2021). https://doi.org/10.1016/j.spmi.2021.106861
E. Peksu, O. Guller, M. Parlak, M.S. Islam, and H. Karaagac, “Towards the fabrication of third generation solar cells on amorphous, flexible and transparent substrates with well-ordered and disordered Si-nanowires/pillars,” Physica E: Low-Dimensional Systems and Nanostructures, 124, 114382 (2020). https://doi.org/10.1016/j.physe.2020.114382
H.T. Dastjerdi, R. Tavakoli, P. Yadav, D. Prochowicz, M. Saliba, and M.M. Tavakoli, “Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells,” ACS applied materials & interfaces, 11(29), 26047-26052 (2019). https://doi.org/10.1021/acsami.9b08466
E. Peksu, and H. Karaagac, “A third-generation solar cell based on wet-chemically etched Si nanowires and sol-gel derived Cu2ZnSnS4 thin films,” Journal of Alloys and Compounds, 774, 1117-1122 (2019). https://doi.org/10.1016/j.jallcom.2018.10.012
O. Guller, E. Peksu, and H. Karaagac, “Synthesis of TiO2 Nanorods for Schottky‐Type UV‐Photodetectors and Third‐Generation Solar Cells,” Physica Status Solidi (a), 215(4), 1700404 (2018). https://doi.org/10.1002/pssa.201700404
C. Wang, C. Li, S. Wen, P. Ma, Y. Liu, R.C.I. Mac Kenzie, W. Tian, and S. Ruan, “Combining plasmonic trap filling and optical backscattering for highly efficient third generation solar cells,” Journal of Materials Chemistry A, 5(8), 3995-4002 (2017). https://doi.org/10.1039/C7TA00229G
Y. Wan, C. Samundsett, J. Bullock, M. Hettick, T. Allen, D. Yan, J. Peng et al. “Conductive and stable magnesium oxide electron‐selective contacts for efficient silicon solar cells,” Advanced Energy Materials, 7(5), 1601863 (2017). https://doi.org/10.1002/aenm.201601863
L. Zhu, L. Wang, C. Pan, L. Chen, F. Xue, B. Chen, L. Yang, et al., “Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect,” ACS nano, 11(2), 1894-1900 (2017). https://doi.org/10.1021/acsnano.6b07960
T. Fix, A. Nonat, D. Imbert, S. Di Pietro, M. Mazzanti, A. Slaoui, and L.J. Charbonnière, “Enhancement of silicon solar cells by downshifting with Eu and Tb coordination complexes,” Progress in Photovoltaics: Research and Applications, 24(9), 1251 1260 (2016). https://doi.org/10.1002/pip.2785
X. Xu, J. Cui, J. Han, J. Zhang, Y. Zhang, L. Luan, G. Alemu et al., “Near field enhanced photocurrent generation in p-type dye-sensitized solar cells,” Scientific Reports, 4(1), 3961 (2014). https://doi.org/10.1038/srep03961
Copyright (c) 2024 Santosh Kumar Srivastava, Jitendra Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).