Computer Simulation of Adsorption of C60 Fullerene Molecule on Reconstructed Si(100) Surface
Abstract
The adsorption of the C60 fullerene molecule has been studied in various configurations on a reconstructed Si(100) silicon surface. Among fullerenes, fullerene C60 is of particular importance since it has the most stable form and consists of 60 carbon atoms. Monocrystalline silicon has the diamond structure, the size of its crystal lattice is 5.43 Å. The MD-simulation calculations have been performed using the open source LAMMPS MD-simulator software package and the Nanotube Modeler computer program. The Tersoff interatomic potential has been used to determine the interactions between the Si-Si, C-C and Si-C atoms. The adsorption energy of the C60 molecule on the reconstructed Si(100) surface, the bond lengths and the number of bonds formed depend on the adsorption geometry, i.e. at what point on the substrate the molecule is adsorbed and in what configuration.
Downloads
References
H.W. Kroto, J.R. Heath, S.C. O’Brein, R.F. Curl, and R.E. Smalley, “C60: Buckminsterfullerene,” Nature, 318, 162–163 (1985). https://doi.org/10.1038/318162a0
W. Kratschmer, L.D. Lamb, and D.R. Hoffman, “Solid C60: a new form of carbon,” Nature, 347, 354–358 (1990). https://doi.org/10.1038/347354a0
M. Paukov, Ch. Kramberger, I. Begichev, M. Kharlamova, and M. Burdanova, “Functionalized Fullerenes and Their Applications in Electrochemistry,” Solar Cells, and Nanoelectronics, Materials, 16(3), 1276 (2023). https://doi.org/10.3390/ma16031276
S.A. Bakhramov, U.K. Makhmanov, and A.M. Kokhkharov, “Synthesis of Nanoscale Fullerene C60 Filaments in the Volume of an Evaporating Drop of a Molecular Solution and Preparation of Thin Nanostructured Coatings on Their Basis,” Applied Solar Energy, 55(5), 309-314 (2019). https://doi.org/10.3103/S0003701X19050049
A. Ulukmuradov, I. Yadgarov, V. Stelmakh, and F. Umarov, “Computer Simulation of Adsorption of Fullerene on Graphene,” Journal of Nano- and Electronic Physics, 13(2), 02025-1–02025-5 (2021). https://doi.org/10.21272/jnep.13(2).02025
J.N. Luy, and R. Tonner, “Organic Functionalization at the Si(001) Dimer Vacancy Defect-Structure, Bonding, and Reactivity,” J. Phys. Chem. C, 125, 5635–5646 (2021). https://doi.org/10.1021/acs.jpcc.1c00262
X. Meng, “An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: mechanisms, growth characteristics, and promising applications,” Mater. Chem. A, 5, 18326–18378 (2017). https://doi.org/10.1039/C7TA04449F
P. Sundberg, M. Karppinen, and Beilstein, “Organic and inorganic–organic thin film structures by molecular layer deposition: A review,” J. Nanotechnol. 5, 1104–1136 (2014). https://doi.org/10.3762/bjnano.5.123
J. Lee, and M. Kang, “Structure and bonding nature of C60/Si(100)-c(4×4): density-functional theory calculations,” Phys. Rev. B, 7, 25305.1–25305.5 (2007). https://doi.org/10.1103/PhysRevB.75.125305
V.N. Arustamov, I.Kh. Khudaykulov, M.V. Kremkov, Kh.B. Ashurov, I.O. Kosimov, V.P. Kharyakov, and U.F. Berdiyev, “Creation of lowohmic copper contacts on the silicon crystals surface for application in photocells,” Applied Solar Energy, 59(1), 7-16 (2023). https://doi.org/10.3103/S0003701X22601612
P. Seongjun, S. Deepak, and Ch. Kyeongjae, “Endo-fullerenes and Doped Bucky Onions as Seed Materials for Solid State Quantum Bits, Mat. Res. Soc. Symp. Proc. 675, 181 (2001). https://doi.org/10.1557/PROC-675-W1.8.1
W. Harneit, “Fullerene-based electron-spin quantum computer,” Phys. Rev. A, 65, 032322 (2002). https://doi.org/10.1103/PhysRevA.65.032322
C. Meyer, W. Harneit, B. Naydenov, K. Lips, and A. Weidinger, “N@C and P@C as quantum bits,” Appl. Magn. Reson. 27, 123–132 (2004). https://doi.org/10.1007/BF03166307
R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, et al., “Conducting films of C60 and C70 by alkali-metal doping,” Nature, 350, 320-322 (1991). https://doi.org/10.1038/350320a0
S.K. Kuchkanov, et al., “Thermalvoltaic Effect in Si-Ge/Si and Si-Ge/Si Film Structures Subjected to Ion Treatment,” Applied Solar Energy, 58(3), 355-359 (2022). https://doi.org/10.3103/S0003701X22030100
R. Rurali, R. Cuadrado, and J. I. Cerdá, “C60 adsorption on the Si(111)-p(7×7) surface: A theoretical study,” Physical Review B, 81, 075419 (2010). https://doi.org/10.1103/PhysRevB.81.075419
L.J. Yo., and H.K. Myung, “Adsorption structure of a single C60 molecule on Si(111)-(7×7): density-functional calculations,” Surface Science, 602, 1408-1412 (2008). https://doi.org/10.1016/j.susc.2008.02.014
F. Yasunori, S. Koichiro, and K. Atsushi, “Transition of an adsorption state of C60 on a Si(111)7×7 surface revealed by high-resolution electron-energy-loss spectroscopy,” Physical Review B, 56, 12124 (1997). https://doi.org/10.1103/PhysRevB.56.12124
M. Huijing, F. Xuyang, K. Shuangyu, and C. Yingxiang, “Adsorption geometries and interface electronic structure of C60 on Si(100)2 × 1 reconstruction surface,” Surface Science, 690, 121484 (2019). https://doi.org/10.1016/j.susc.2019.121484
P.D. Godwin, S.D. Kenny, R. Smith, and J. Belbruno, “The structure of C60 and endohedral C60 on the Si(100) surface,” Surface Science, 490, 409–414 (2001). https://doi.org/10.1016/S0039-6028(01)01365-6
P.D. Godwin, S.D. Kenny, and R. Smith, “The bonding sites and structure of C60 on the Si(100) surface,” Surf. Sci. 529, 237 246 (2003). https://doi.org/10.1016/S0039-6028(03)00074-8
D.A. Olyanicha, V.V. Mararova, T.V. Utas, A.V. Zotova, and A.A. Saranin, “Adsorption and self-assembly of fullerenes on Si(111)√3×√3-Ag: C60 and C70,” Surface Science, 653, 138-142 (2016). https://doi.org/10.1016/j.susc.2016.06.016
B. Khaoula, D. Eric, S. Regis, H. Marie-Christine, and S. Philippe, “C60 molecules grown on a Si-supported Nanoporous Supramolecular Network: a DFT study,” Physical Chemistry Chemical Physics, 16(28), 14722–14729 (2014). https://doi.org/10.1039/C4CP01677G
L.J. Yo, and H.K. Myung, “Structure and bonding nature of C60 /Si(100)-c(4×4): Density-functional theory calculations,” Physical Review B, 75, 125305 (2007). https://doi.org/10.1103/PhysRevB.75.125305
S. Suto, K. Sakamoto, D. Kondo, T. Wakita, A. Kimura, A. Kakizaki, C.-W. Hu, and A. Kasuya, “Interaction of C60 with Si(111)7×7 and Si(100)2×1 surfaces studied by STM, PES and HREELS: annealing effect,” Surface Science, 438, 242-247 (1999). https://doi.org/10.1016/S0039-6028(99)00576-2
W. Haiqian, Z. Changgan, L. Qunxiang, W. Bing, Ya. Jinlong, J.G. Hou, and Q. Zhu, “Scanning tunneling spectroscopy of individual C60 molecules adsorbed on Si(111)-7×7 surface,” Surface Science, 442, 1024-1028 (1999). https://doi.org/10.1016/S0039-6028(99)00977-2
O. Kazuhiro, N. Masashi, U. Hirobumi, K. Tetsuo, Ya. Yoshiyuki, M. Kozo, J. Yoshinobu, et al., “Regioselective cycloaddition reaction of alkene molecules to the asymmetric dimer on Si(100)c(4x2),” J. Am. Chem. Soc. 129, 1242-1245 (2007). https://doi.org/10.1021/ja066285i
Ch. Dong, and S. Dror, “Temperature effects of adsorption of C60 molecules on Si(111)-(7×7) surfaces,” Physical Review B, 49, 7612 (1994). https://doi.org/10.1103/PhysRevB.49.7612
S. Suto, K. Sakamoto, T. Wakita, C.-W. Hu, and A. Kasuya, “Vibrational properties and charge transfer of C60 adsorbed on Si(111)-(7×7) and Si(100)-(2×1) surfaces,” Phys. Rev. B, 56, 7439 (1997). https://doi.org/10.1103/PhysRevB.56.7439
D. Chen, and D. Sarid, “An STM study of C60 adsorption on Si(100)-(2×1) surfaces: from physisorption to chemisorption,” Surf. Sci. 329, 206–218 (1995). https://doi.org/10.1016/0039-6028(95)00051-8
D. Klyachko, and D.M. Chen, “Ordering of C60 on Anisotropic Surfaces,” Phys. Rev. Lett. 75, 3693 (1995). https://doi.org/10.1103/PhysRevLett.75.3693
T. Hashizume, X.D. Wang, Y. Nishina, H. Shinohara, Y. Saito, Y. Kuk, and T. Sakurai, “Field Ion-Scanning Tunneling Microscopy Study of C60 on the Si(100) Surface,” Jpn. J. Appl. Phys. 31, L880 (1992). https://doi.org/10.1143/JJAP.31.L880
S. Suto, K. Sakamoto, D. Kondo, T. Wakita, A. Kimura, and A. Kakizaki, “Bonding nature of C60 adsorbed on Si(111)7×7 and Si(100)2×1 surfaces studied by HREELS and PES,” Surf. Sci. 85, 427–428 (1999). https://doi.org/10.1016/S0039-6028(99)00238-1
P. Moriarty, M.D. Upward, A.W. Dunn, Y.-R. Ma, P.H. Beton, and D. Teehan, “C60-terminated Si surfaces: Charge transfer, bonding, and chemical passivation,” Phys. Rev. B, 57, 362 (1998). https://doi.org/10.1103/PhysRevB.57.362
X.D. Wang, T. Hashizume, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai, “Adsorption of C60 and C84 on the Si(100)2×1 surface studied by using the scanning tunneling microscope,” Phys. Rev. B, 47, 15923 (1993). https://doi.org/10.1103/PhysRevB.47.15923
M. De Seta, D. Sanvitto, and F. Evangelisti, “Direct evidence of C60 chemical bonding on Si(100),” Phys. Rev. B, 59, 9878 (1999). https://doi.org/10.1103/PhysRevB.59.9878
K. Sakamoto, D. Kondo, M. Harada, A. Kimura, A. Kakizaki, and S. Suto, “Electronic structures of C60 adsorbed on Si(111)-(7×7) and Si(001)-(2×1) surfaces,” Surf. Sci. 642, 433–435 (1999). https://doi.org/10.1016/S0039-6028(99)00094-1
Y. Kawazoe, H. Kamiyama, Y. Maruyama, and K. Ohno, “Electronic Structures of Layered C60 and C70 on Si(100) Surface,” Jpn. J. Appl. Phys. Part 1, 32, 1433 (1993). https://doi.org/10.1143/JJAP.32.1433
T. Yamaguchi, “Electronic states of C60 molecules on Si(001)2×1 and Si(111)7×7 surfaces,” J. Vac. Sci. Technol. B, 12, 1932 (1994). https://doi.org/10.1116/1.587674
A. Yajima, and M. Tsukada, “Electronic structure of monolayer C60 on Si(100)2×1 surface,” Surf. Sci. 355, 357–358 (1996). https://doi.org/10.1016/0039-6028(96)00181-1
Ch. Hobbs, and L. Kantorivich, “Adsorption of C60 on the Si(001) surface calculated within the generalized gradient approximation,” Nanotechnology, 15, S1–S4 (2004). https://doi.org/10.1088/0957-4484/15/2/001
Ch. Hobbs, L. Kantorivich, and J.D. Gale, “An ab initio study of C60 adsorption on the Si(001) surface,” Surf. Sci. 591, 45–55 (2005). https://doi.org/10.1016/j.susc.2005.06.038
Ch. Weiguang, L. Chong, P. Lijun, W. Fei, S. Qiang, and J. Yu, “First-principles investigation of C60 molecule adsorption on a diamond (100)-2×1 surface,” Modelling Simul. Mater. Sci. Eng. 19, 045001 (2011). https://doi.org/10.1088/0965-0393/19/4/045001
R. Smith, and K. Beardmore, “Molecular dynamics studies of particle impacts with carbon-based materials,” Thin Solid Films, 272, 255 (1996). https://doi.org/10.1016/0040-6090(95)06052-9
K. Beardmore, and R. Smith, “C60 film growth and the interaction of fullerenes with bare and H terminated Si surfaces, studied by molecular dynamics,” Nucl. Instrum. Meth. B, 106, 74 (1995). https://doi.org/10.1016/0168-583X(95)00682-6
K. Beardmore, R. Smith, A. Richter, and B. Winzer, Mol. Mater. 7, 155 (1996).
R. Taylor, J.P. Hare, A.K. Abdul-Sada, and H.W. Kroto, “Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon,” J. Chem. Soc. Chem. Commun. 20, 1423-1425, (1990). https://doi.org/10.1039/C39900001423
J.M. Hawkins, A. Meyer, L.A. Lewis, S. Loren, and Hollander, “Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework,” Science, 252, 312-313 (1991). https://doi.org/10.1126/science.252.5003.312
R.C. Haddon, L.E. Brus, and K. Raghavachari, “Rehybridization and π-orbital alignment: the key to the existence of spheroidal carbon clusters,” Chem. Phys. Lett. 131, 165-169 (1986). https://doi.org/10.1016/0009-2614(86)80538-3
A.L. Balch, V.J. Catalano, J.W. Leen, M.M. Olmstead, and S.R. Parkin, “(eta.2-C70)Ir(CO)Cl(PPh3)2: the synthesis and structure of an iridium organometallic derivative of a higher fullerene,” J. Amer. Chem. Soc. 113, 8953-8955 (1991). https://doi.org/10.1021/ja00023a057
A. Augustyn, Silicon, (Encyclopædia Britannica, Inc). https://www.britannica.com/science/silicon/Uses
M. Yoshida, Nanotube Modeler (Nanocones, Bucky-Ball, Fullerenes, Simulation Software) (JCrystalSoft, 2005-2018). http://www.jcrystal.com/products/wincnt/index.htm
Sandia National Laboratories, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), 2023, https://www.lammps.org/
Java, Jmol, 2023, http://www.jmol.org/
W.G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31, 1695, (1985). https://doi.org/10.1103/PhysRevA.31.1695
Y. S. Al-Hamdani, D. Alfe, O. A. von Lilienfeld, and A. Michaelides, “Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules,” J. Chem. Phys. 144, 154706 (2016). https://doi.org/10.1063/1.4945783
D.C. Sorescu, D.L. Thompson, M.M. Hurley, and C.F. Chabalowski, “First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface,” Phys. Rev. B, 66, 035416 (2002). https://doi.org/10.1103/PhysRevB.66.035416
Copyright (c) 2024 Ikrom Z. Urolov, Farid F. Umarov, Ishmumin D. Yadgarov, Ganiboy T. Rakhmanov, Khayitmurod I. Jabborov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).