Spectra of Ultrasound Doppler Response Using Plane-Wave Compounding Technique
Abstract
Within the framework of a simple model of the sensitivity function, the Doppler spectra are considered for different ways of generating response signals using plane wave compounding. A Doppler spectrum is obtained for coherent compounding of signals received at different steering angles of waves during their period of changing. Compared to traditional diagnostic systems, the Doppler spectrum width is increased only by limiting the duration of the signals. There is no additional increase in the spectrum width if the compound signals are formed by adding with cyclic permutation, in which signals from each new wave angle are compounded. When a Doppler signal is formed directly from Doppler signals at different steering angles, the spectral width increases both in comparison with the traditional method of sensing with stationary focused ultrasound fields and with the case of coherent signal compouding. The obtained increase in the spectral width has an intrinsic physical meaning. The increase in width is connected with a dynamic change in the Doppler angle, which increases the interval of apparent projections of the velocities of motion of inhomogeneities along the direction of transmitting of a plane wave without inclination.
Downloads
References
A. Carovac, F. Smajlovic, and D. Junuzovic, Acta Informatica Medica, 19(3), 168 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564184/
V. Chan, and A. Perlas, “Basics of Ultrasound Imaging,” in: Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, (Springer: Berlin/Heidelberg, Germany, 2011). pp. 13-19. http://dx.doi.org/10.1007/978-1-4419-1681-5_2
I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, Synthetic Aperture Method in Ultrasound Imaging, (IntechOpen, London, UK, 2011). http://dx.doi.org/10.5772/15986
S.I. Nikolov, B.G. Tomov, and J.A. Jensen, in: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, (Pacific Grove, CA, USA, 2006), pp. 1548-1552. https://doi.org/10.1109/ACSSC.2006.355018
M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(1), 102 (2014). https://doi.org/10.1109/TUFFC.2014.6689779
M.A. Lediju, G.E. Trahey, B.C. Byram and J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(7), 1377 (2011). https://doi.org/10.1109/TUFFC.2011.1957
Y.L. Li, and J.J. Dahl, J. Acoust. Soc. Am. 141(3), 1582 (2017). https://doi.org/10.1121/1.4976960
J. Provost, C. Papadacci, C. Demene, J. Gennisson, M. Tanter, and M. Pernot, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(8), 1467 (2015). https://doi.org/10.1109/TUFFC.2015.007032
G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 56(3), 489 (2009). https://doi.org/10.1109/TUFFC.2009.1067
J. Jensen, M.B. Stuart, and J.A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1922 (2016). https://doi.org/10.1109/TUFFC.2016.2591980
C. Papadacci, M. Pernot, M. Couade, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 288 (2014). http://doi.org/10.1109/TUFFC.2014.6722614
J. Cheng, and J.Y. Lu, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 53(5), 880 (2006). https://doi.org/10.1109/TUFFC.2006.1632680
N. Oddershede, and J.A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 54(9), 1811 (2007). https://doi.org/10.1109/TUFFC.2007.465
B. Denarie et al., IEEE Trans. Med. Imaging, 32(7), 1265 (2013). https://doi.org/10.1109/TMI.2013.2255310
R. Moshavegh, J. Jensen, C.A. Villagómez-Hoyos, M.B. Stuart, M.C. Hemmsen, and J.A. Jensen, in: Proceedings of SPIE Medical Imaging, (San Diego, California, United States, 2016) pp. 97900Z-97900Z-9. https://doi.org/10.1117/12.2216506
J.A. Jensen, and N. Oddershede, IEEE Trans. Med. Imag. 25(12), 1637(2006). https://doi.org/10.1109/TMI.2006.883087
J. Udesen, F. Gran, K.L. Hansen, J.A. Jensen, C. Thomsen, and M.B. Nielsen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 55(8), 1729 (2008). https://doi.org/10.1109/TUFFC.2008.858
S. Ricci, L. Bassi and P. Tortoli, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 314 (2014).https://doi.org/10.1109/TUFFC.2014.6722616
Y.L. Li, and J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1022 (2015). https://doi.org/10.1109/TUFFC.2014.006793
J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(1), 134 (2011).https://doi.org/10.1109/TUFFC.2011.1780
Y.L. Li, D. Hyun, L. Abou-Elkacem, J. K. Willmann, J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1878 (2016). https://doi.org/10.1109/TUFFC.2016.2616112
D. Hyun, and J.J. Dahl, J. Acoust. Soc. Am. 147(3), 1323 (2020). https://doi.org/10.1121/10.0000809
I.K. Ekroll, M.M. Voormolen, O.K.-V. Standal, J.M. Rau, and L. Lovstakken, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(9), 1634 (2015). https://doi.org/10.1109/TUFFC.2015.007010
J.A. Jensen, S.I. Nikolov, K.L. Gammelmark, and M.H. Pedersen, Ultrasonics, 44(1), e5 (2006). https://doi.org/10.1016/j.ultras.2006.07.017
M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, IEEE Trans. Ultrason. Ferroelectr.Freq. Contr. 49(10), 1363 (2002). https://doi.org/10.1109/TUFFC.2002.1041078
J.-l. Gennisson, et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1059 (2015). https://doi.org/10.1109/TUFFC.2014.006936
J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 51(4), 396 (2004). https://doi.org/10.1109/TUFFC.2004.1295425
H. Hasegawa, and H. Kanai, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 55(12), 2626 (2008). https://doi.org/10.1109/TUFFC.2008.978
J. Vappou, J. Luo, and E.E. Konofagou, Am. J. Hypertens. 23(4), 393 (2010). https://doi.org/10.1038/ajh.2009.272
O. Couture, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 59(12), 2676 (2012). https://doi.org/10.1109/TUFFC.2012.2508
C. Zheng, Q. Zha, L. Zhang, and H. Peng, IEEE Access, 6, 495 (2018). https://doi.org/10.1109/ACCESS.2017.2768387
Y.M. Benane, et al., in: 2017 IEEE International Ultrasonics Symposium (IUS), (Washington, DC, USA, 2017). pp. 1-4. https://doi.org/10.1109/ULTSYM.2017.8091880
C.-C. Shen, and Y.-C. Chu, Sensors, 21, 4856 (2021). https://doi.org/10.3390/s21144856
I.V. Skresanova, and E.A. Barannik, Ultrasonics, 52(5), 676 (2012). https://doi.org/10.1016/j.ultras.2012.01.014
I.V. Sheina, and E.A. Barannik, East Eur. J. Physics, (1), 116 (2022). https://doi.org/10.26565/2312-4334-2022-1-16
E.A. Barannik, and O.S. Matchenko, East Eur. J. Phys. 3(2) 61 (2016). https://doi.org/10.26565/2312-4334-2016-2-08 (in Russian)
I.V. Sheina, O.B. Kiselov, and E.A. Barannik, East Eur. J. Phys. (4), 5 (2020). https://doi.org/10.26565/2312-4334-2020-4-01
C.A.C. Bastos, P.J. Fish, R. Steel, and F. Vaz, Ultrasonics, 37(9), 623–632 (2000). https://doi.org/10.1016/S0041-624X(00)00004-4
E.A. Barannik, Acoust. Phys. 43(4), 387 (1997). http://www.akzh.ru/pdf/1997_4_453-457.pdf. (in Russian)
Copyright (c) 2024 Evgen A. Barannik, Mykhailo O. Hrytsenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).