Power Spectra of Doppler Response Signals from Biological Objects Using Synthetic Aperture Ultrasound

  • Iryna V. Sheina Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0293-4849
  • Olexander B. Kiselov Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7585-5180
  • Evgen A. Barannik Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-3962-9960
Keywords: ultrasound, synthetic aperture technique, continuum model of scattering, sensitivity function, dynamic focusing, response forming

Abstract

The influence of dynamic change in the steering angle of incident and scattered wave beams on the spectra of the ultrasonic Doppler response is studied on the basis of the previously developed continuum model of ultrasound waves scattering in biological objects for the case, when the Doppler response signals are averaged over the period of changing the steering angle. A general expression is obtained, which combines the resultant spectrum of the power of the ultrasonic Doppler response signal from the region of interest, the spectral characteristics of the ultrasound scatterers movement, and the sensitivity function of the diagnostic synthetic aperture system. It is shown that, as compared to the Doppler response, which is a sequence of discrete values of the response signals from different steering angles, the use of averaging allows to reduce the width of the Doppler spectra without deterioration of their resolution. It is concluded that the achievement of better spatial resolution, when using the synthetic aperture method, is possible without deterioration of the spectral characteristics and, accordingly, of the accuracy of Doppler measurements of diagnostic parameters, which are determined during the ultrasound studies. The results obtained make it possible to optimize different Doppler techniques within the framework of the general synthetic aperture method.

Downloads

Download data is not yet available.

References

P.N.T. Wells, Phys. Med. Biol. 51(13), R83-R98 (2006), https://doi.org/10.1088/0031-9155/51/13/R06.

P. R. Hoskins, K. Martin, and A. Thrush (eds.), Diagnostic Ultrasound: Physics and Equipment, 3rd ed. (CRC Press, Boca Raton, 2019), in https://doi.org/10.1201/9781138893603.

P.N.T. Wells, Eur. J. Ultrasound, 7(1), 3-8 (1998), https://doi.org/10.1016/S0929-8266(98)00006-8.

D.H. Evans, Proc. Inst. Mech. Eng. H, 224(2), 241-253 (2009), https://doi.org/10.1243/09544119JEIM599.

J.A. Jensen, S.I. Nikolov, A.C.H. Yu, and D. Garcia, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 63(11), 1704-1721 (2016), http://doi.org/10.1109/TUFFC.2016.2600763.

J.A. Jensen, S.I. Nikolov, A.C.H. Yuand, and D. Garcia, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 63(11), 1722-1732 (2016), http://doi.org/10.1109/TUFFC.2016.2598180.

N. Pulkovski, P. Schenk, N.A. Maffiulettiand, and A.F. Mannion, MuscleNerve, 37(5), 638–649 (2008), https://doi.org/10.1002/mus.20996.

L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson, Ultrasound Med. Biol. 22(8), 959-977 (1996), https://doi.org/10.1016/S0301-5629(96)00120-2.

J. Ophir, S.K. Alam, B.S. Garra, F. Kallel, E. Konofagou, T.A. Krouscop, C.R.B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, J. Med. Ultrasonics, 29(4), 155-171 (2002), https://doi.org/10.1007/BF02480847.

P.N. Wells, and H.D. Liang, J. R. Soc. Interface, 8(64), 1521-1549 (2011), https://doi.org/10.1098/rsif.2011.0054.

K.J. Parker, M.M. Doyley, and D.J. Rubens, Phys. Med. Biol. 56, R1-R29 (2011), https://doi.org/10.1088/0031-9155/56/1/R01.

C. R. Hill, and J. C. Bamber, in: Physical principles of medical ultrasonics, edited by C. R. Hill, J. C. Bamber, G. R. ter Haar (John Wiley & Sons, West Sussex, 2004), pp. 255-302.

J.A. Jensen, S. I.Nikolov, K.L. Gammelmarkand, and M.H. Pedersen, Ultrasonics, 44(1), e5–e15 (2006), https://doi.org/10.1016/j.ultras.2006.07.017.

M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 49(10), 1363-1374 (2002), https://doi.org/10.1109/TUFFC.2002.1041078.

J.Y. Lu, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 44(4), 839–856 (1997), https://doi.org/10.1109/58.655200.

S. Nikolov, Synthetic aperture tissue and flow ultrasound imaging, Ph.D. dissertation, Dept. Electr. Eng., Tech. Univ. Denmark, (Lyngby, Denmark, 2001).

M. Karaman, P.C. Li, and M. O’Donnell, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42(3), 429–442 (1995), https://doi.org/10.1109/58.384453.

M.H. Pedersen, K.L. Gammelmark, and J.A. Jensen, Ultrasound Med. Biol. 33(1), 37-47 (2007), https://doi.org/10.1016/j.ultrasmedbio.2006.07.041.

M. Tanter and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(1), 102-119 (2014), https://doi.org/10.1109/TUFFC.2014.6689779.

H. Yao Synthetic Aperture Methods for Medical Ultrasonic Imaging, Dept. Inform. Univ. Oslo, (University of Oslo, Oslo, 1997).

D.K. Peterson, and G.S. Kino, IEEE Trans. Son. Ultrason. 31(4), 337-351 (1984), https://doi.org/10.1109/T-SU.1984.31514.

J.T. Ylitalo, and H. Ermert, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 41(3), 333-339 (1994), https://doi.org/10.1109/58.285467.

G.R. Lockwood, J.R. Talman, and S.S. Brunke, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 45(4), 980-988 (1998), https://doi.org/10.1109/58.710573.

C.R. Hazard, and G.R. Lockwood, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 46(4), 972–980 (1999), https://doi.org/10.1109/58.775664.

M. O’Donnell, and L.J. Thomas, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39(3), 366–380 (1992), https://doi.org/10.1109/58.143171.

R. Moshavegh, J. Jensen, C.A. Villagómez-Hoyos, M.B. Stuart, M.C. Hemmsen, and J.A. Jensen, in: Proceedings of SPIE Medical Imaging (San Diego, California, United States, 2016), pp. 97900Z-97900Z-9, https://doi.org/10.1117/12.2216506.

L. Sandrin, S. Catheline, M. Tanter, and M. Fink, in: Acousical Imaging, edited by M. Halliwell, P. N. T. Wells (Springer, Boston, MA, 2002), pp. 485-492, https://doi.org/10.1007/0-306-47107-8_68.

J. A.Jensen, O. Holm, L.J. Jerisen, H. Bendsen, S.I. Nikolov, B.G. Tomov, P. Munk, M. Hansen, K. Salomonsen, J. Hansen, K. Gormsen, H.M. Pedersen, and K.L. Gammelmark, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 52(5), 881-891 (2005), https://doi.org/10.1109/TUFFC.2005.1503974.

J. Lu, J. Cheng, and J. Wang, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 53(10), 1796–1812(2006), https://doi.org/10.1109/TUFFC.2006.112.

P. Tortoli, L. Bassi, E. Boni, A. Dallai, F. Guidi, and S. Ricci, IEEE Trans. Ultrason. Ferroelec.Freq. Contr. 56(10), 2207-2216 (2009), https://doi.org/10.1109/TUFFC.2009.1303.

S.I. Nikolov and J.A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 50(7), 848-856 (2003), https://doi.org/10.1109/TUFFC.2003.1214504.

J.A. Jensen, and N. Oddershede, IEEE Trans. Med. Imag. 25(12), 1637-1644(2006), https://doi.org/10.1109/TMI.2006.883087.

J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(1), 134-147 (2011), https://doi.org/10.1109/TUFFC.2011.1780.

L. Sandrin, M. Tanter, S. Catheline, and M. Fink, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 49(4), 426–435 (2002), https://doi.org/10.1109/58.996560.

J. Bercoff , M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 51(4), 396–409 (2004), https://doi.org/10.1109/TUFFC.2004.1295425.

H. Hasegawa, and H. Kanai, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 55(12), 2626–2639 (2008), https://doi.org/10.1109/TUFFC.2008.978

J. Vappou, J. Luo, and E.E. Konofagou, Am. J. Hypertens. 23(4), 393–398 (2010),https://doi.org/10.1038/ajh.2009.272.

O. Couture, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec.Freq. Contr. 59(12), 2676–2683 (2012), https://doi.org/10.1109/TUFFC.2012.2508.

E. Mace, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, Nature methods, 8(8), 662–664 (2011), https://doi.org/10.1038/nmeth.1641.

G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 56(3), 489-506 (2009), https://doi.org/10.1109/TUFFC.2009.1067.

J. Jensen, M.B. Stuart, and J.A. Jensen, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 63(11), 1922-1934 (2016), https://doi.org/10.1109/TUFFC.2016.2591980.

N. Oddershedeand, and J.A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 54(9), 1811-1825 (2007), https://doi.org/10.1109/TUFFC.2007.465.

M.M. Pedersen, M.J. Pihl, P. Haugaard, J.M. Hansen, K.L. Hansen, M.B. Nielsen, and J.A. Jensen, Ultrasound Med. Biol. 38(1), 145–151(2012), https://doi.org/10.1016/j.ultrasmedbio.2011.10.003.

P. Tortoli, M. Lenge, D. Righi, G. Ciuti, H. Liebgott, and S. Ricci, Ultrasound Med. Biol. 41(5), 1354-1362 (2015), https://doi.org/10.1016/j.ultrasmedbio.2015.01.008.

I.K. Ekroll, T. Dahl, H. Torp, and L. Løvstakken, Ultrasound Med. Biol. 40(7), 1629–1640 (2014), https://doi.org/10.1016/j.ultrasmedbio.2014.01.021.

K.L. Hansen, J. Udesen, N. Oddershede, L. Henze, C. Thomsen, J.A. Jensen, and M.B. Nielsen, Ultrasonics, 49(8), 659–667 (2009), https://doi.org/10.1016/j.ultras.2009.04.002.

J. Jensen, M.S. Traberg, C.A. Villagómez Hoyos, J.B. Olesen, B. Tomov, R. Moshavegh, M.B. Stuart, C. Ewertsen, K.L. Hansen, M.B. Nielsen, and J.A. Jensen, in: 2017 IEEE International Ultrasonics Symposium (IUS), (IEEE, Washington, DC, 2017), pp. 1-4, https://doi.org/10.1109/ULTSYM.2017.8092535.

J. Jensen, J.B. Olesen, M.B. Stuart, P.M. Hansen, M.B. Nielsen, and J.A. Jensen, Ultrasonics, 70, 136-146 (2016), https://doi.org/10.1016/j.ultras.2016.04.023.

E.A. Barannik, Ultrasonics, 39(2), 311–317 (2001), https://doi.org/10.1016/S0041-624X(01)00059-2.

I.V. Skresanova, and E.A. Barannik, Ultrasonics, 52(5), 676-684 (2012), https://doi.org/10.1016/j.ultras.2012.01.014.

E.A. Barannik, and O.S. Matchenko, East Eur. J. Phys. 2(1), 36-40 (2015), https://doi.org/10.26565/2312-4334-2015-1-05. (in Russian)

O.S. Matchenko, and E.A. Barannik, Acoust. Phys. 63(5), 596-603 (2017), https://doi.org/10.1134/ S1063771017050086.

E.A. Barannik, and O.S. Matchenko, East Eur. J. Phys. 3(2) 61-64 (2016), https://doi.org/10.26565/2312-4334-2016-2-08. (in

B.A.J. Angelsen, IEEE Trans. Biomed. Eng. BME-27(2), 61–67 (1980), https://doi.org/10.1109/TBME.1980.326708.

P.J. Fish, in: PhysicalPrinciplesofMedical Ultrasonics, edited by C.R. Hill (EllisHorwood, Chichester, 1986), pp. 338-376.

R.J. Dickinson, and D.K. Nassiri, in: Physical principles of medical ultrasonics, edited by C. R. Hill, J. C. Bamber, G. R. terHaar (John Wiley & Sons, West Sussex, 2004), p. 191–222.

E.A. Barannik, Sov. Phys. Acoust. 38 (2), 237-244 (1992). (in Russian) http://www.akzh.ru/pdf/1992_2_237-244.pdf. (in Russian)

E.A. Barannik, Acoust. Phys. 39 (5), 939-941 (1993). (in Russian), http://www.akzh.ru/pdf/1993_5_939-941.pdf. (in Russian)

E.A. Barannik, Acoust. Phys. 40(2), 212-214 (1994), http://www.akzh.ru/pdf/1994_2_212-214.pdf. (in Russian)

E.A. Barannik, Acoust. Phys. 43(4), 453–457 (1997),http://www.akzh.ru/pdf/1997_4_453-457.pdf. (in Russian)

R.J. Eckersley, and J.C. Bamber, in: Physical principles of medical ultrasonics, edited by C.R. Hill, J.C. Bamber, G.R. ter Haar (John Wiley & Sons, West Sussex, 2004), p. 303-336.

W. Gilson, and S. Orphanoudakis, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, NewOrleans, 1988), pp. 473-474, https://doi.org/10.1109/IEMBS.1988.94615.

Published
2020-11-20
Cited
How to Cite
Sheina, I. V., Kiselov, O. B., & Barannik, E. A. (2020). Power Spectra of Doppler Response Signals from Biological Objects Using Synthetic Aperture Ultrasound. East European Journal of Physics, (4), 5-12. https://doi.org/10.26565/2312-4334-2020-4-01