Barrow Holographic Dark Energy Model in Bianchi Type-III Universe with Quintessence

Keywords: Cosmic accerleration, Barrow holographic dark energy, Bianchi type-III, Cold dark matter, Deceleration parameter, Equation of state parameter

Abstract

In this paper, we study a spatially homogeneous and anisotropic Bianchi type-III universe containing cold dark matter and Barrow holographic dark energy within the framework of General Relativity. We assume the cold dark matter and Barrow holographic dark energy to be non-interacting and obtain exact solutions of the Einstein field equations by considering a hybrid expansion law and assuming that the expansion scalar is proportional to the shear scalar. We examine the physical and kinematical properties of the resulting model using parameters such as the Hubble parameter, the anisotropic parameter, the deceleration parameter, the equation of state parameter, the jerk parameter etc. We also examine whether the energy conditions are violated or validated. We find that the Null, Weak, and Dominant energy conditions are fulfilled, while the Strong Energy Condition is violated, which supports the accelerated expansion of the universe. The Statefinder diagnostics have been conducted based on recent cosmological observations. In addition, we
reformulated the correspondence between quintessence scalar field and Barrow holographic dark energy model.

Downloads

Download data is not yet available.

References

A.G. Riess, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, 116, 1009-1038 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., ”Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517, 565-586 (1999). https://doi.org/10.1086/307221

D.N. Spergel, et al., ”Frist-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl. Ser. 148, 175–194 (2003). https://doi.org/10.1086/377226

U. Seljak, et al., ”Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy,” Phys. Rev. D, 71, 103515 (2005). https://doi.org/10.1103/PhysRevD.71.103515

C.L. Bennett, et al., ”First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. Ser. 148, 1-27 (2003). https://doi.org/10.1086/345346

M. Tegmark, et al., ”Cosmological parameters from SDSS and WMAP,” Phys. Rev. D, 69, 103501, (2004). https://doi.org/10.1103/PhysRevD.69.103501

D.J. Eisenstein, et al., ”Detection of the Baryon Acoustic Peak in the Large-Scale correlation function of SDSS luminous red galaxies,” The Astronomical Journal, 633, 560-574 (2005). https://doi.org/10.1086/466512

C.R. Contaldi, C.R. Contaldi, H. Hoekstra, and A. Lewis, ”Joint Cosmic Microwave Background and Weak Lensing Analysis: Constraints on Cosmological Parameters,” Phys. Rev. Lett. 90, 221303 (2003). https://doi.org/10.1103/PhysRevLett.90.221303

S.W. Allen, R.W. Schmidt, H. Ebeling, A.C. Fabian, and L. Van Speybroeck, ”Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters,” Mon. Not. R. Astron. Soc. 353, 457–467 (2004). https://doi.org/10.1111/j.1365-2966.2004.08080.x

V. Sahni, and A. Starobinsky, ”The Case for a Positive Cosmological Λ-term,” Int. J. Mod. Phys. D, 9, 373 (2000). https://doi.org/10.1142/S0218271800000542

S. Weinberg, ”The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

M. Sami, and T. Padmanabhan, ”Viable cosmology with a scalar field coupled to the trace of the stress-tensor,” Phys. Rev. D, 67, 083509 (2003). https://doi.org/10.1103/PhysRevD.67.083509

T. Chiba, ”Tracking K-essence,” Phys. Rev. D, 66, 063514 (2002). https://doi.org/10.1103/PhysRevD.66.063514

A. Kamenshchik, U. Moschella, and V. Pasquier, ”An alternative to quintessence,” Phys. Lett. B, 511, 265-268 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

T. Padmanabhan, ”Accelerated expansion of the universe driven by tachyonic matter,” Phys. Rev. D, 66, 021301 (2002). https://doi.org/10.1103/PhysRevD.66.021301

G. ’t Hooft, ”Dimensional reduction in quantum gravity, preprint (2009),” https://doi.org/10.48550/arXiv.gr-qc/9310026

W. Fischler, and L. Susskind, ”Holography and cosmology,” https://doi.org/10.48550/arXiv.hep-th/9806039

M. Li, ”A model of holographic dark energy,” Phys. Lett. B, 603, 1-5 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

C. Tsallis, and L.J.L. Cirto, ”Black hole thermodynamical entropy,” Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

L.N. Granda, and A. Oliveros, ”Infrared cut-off proposal for the holographic density,” Phys. Lett. B, 669(5), 275-277 (2008). https://doi.org/10.1016/j.physletb.2008.10.017

H. Moradpour, et al.: ”Thermodynamic approach to holographic dark energy and the R´enyi entropy,” Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

J.D. Barrow, ”The area of a rough black hole,” Phys. Lett. B, 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643

S. Wang, Y. Wang, and M. Li, ”Holographic dark energy,” Phys. Rep., 696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003

E.N. Saridakis, ”Barrow holographic dark energy,” Phys. Rev. D, 102, 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525

S. Srivastava, and U.K. Sharma, ”Barrow holographic dark energy with Hubble horizon as IR cutoff,” Int. J. Geo. Methods in Mod. Phys. 18, 2150014 (2021). https://doi.org/10.1142/S0219887821500146

B.C. Paul, et al., ”Bianchi-I anisotropic universe with Barrow holographic dark energy,” Eur. Phys. J. C, 82, 76 (2022). https://doi.org/10.1140/epjc/s10052-022-10041-5

Y. Hu, M. Li, N. Li, and Z. Zhang, ”Holographic dark energy with cosmological constant,” JCAP, 1508, 012 (2015). https://doi.org/10.1088/1475-7516/2015/08/012

¨ O. Akarsu, et al., ”Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints,” JCAP01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

T. Biswas, and A. Mazumdar, ”Inflation with a negative cosmological constant,” Phys. Rev. D, 80, 023519 (2009). https://doi.org/10.1103/PhysRevD.80.023519

A.A. Sen, S.A. Adil, and S. Sen, ”Do cosmological observations allow a negative Λ?,” Mon. Not. of the Royal Astro. Society, 518, 1 (2023). https://doi.org/10.1093/mnras/stac2796

S.W. Hawking, and G.F.R. Ellis, The large scale structure of space-time, (Cambridge, England, 1973)

R. Schoen, and S.T. Yau, ”Positivity of the Total Mass of a General Space-Time,” Phys. Rev. Lett. 43, 1457 (1979). https://doi.org/10.1103/PhysRevLett.43.1457

V. Sahni, T.D. Saini, A.A. Starobinsky, and U. Alam, ”Statefinder—a new geometrical diagnostic of dark energy,” JETP Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831

Published
2024-03-05
Cited
How to Cite
Mahanta, C. R., & Das, D. (2024). Barrow Holographic Dark Energy Model in Bianchi Type-III Universe with Quintessence. East European Journal of Physics, (1), 55-69. https://doi.org/10.26565/2312-4334-2024-1-04