Evolution of Mechanical Properties of Pb–Sb–Sn–As–Se Grid Alloys for Lead-Acid Batteries During Natural Aging
Abstract
This study is devoted to the investigation of mechanical properties of a series of low-antimony Pb–Sb–Sn–As–Se grid alloys for lead-acid batteries in as-cast condition and after natural aging during storage. Mechanical properties were characterized by ultimate tensile strength, yield strength, elongation, and Young's modulus determined at room temperature using TIRAtest 2300 and P-0.5 universal testing machines. For most investigated as-cast alloys, an increase in ultimate tensile strength is accompanied by an increase in elongation. Within the temperature range between 70 ºС and 150 ºС, higher heating temperature of a casing mold does not markedly affect average elongation but causes the slight decrease (by ~4 %) in average ultimate tensile strength. When aged during storage for 30–33 days, the Pb–Sb–Sn–As–Se grid alloys, attain higher values of ultimate tensile strength, yield strength, and Young's modulus but lower values of elongation. This is due to precipitation of second-phase particles from lead-based solid solution oversaturated by antimony, arsenic, and selenium. The most noticeable effect of strengthening is observed during first five days of natural aging.
Downloads
References
S. Guruswamy, Engineering Properties and Applications of Lead Alloys, (CRC Press, New York, 2000). https://doi.org/10.1201/9781482276909
D.A.J. Rand, T. Moseley, J. Garche, and C.D. Parker, Valve-Regulated Lead-Acid Batteries, (Elsevier, Amsterdam, 2004). https://doi.org/10.1016/B978-0-444-50746-4.X5000-4
A.H. Seikh, E.-S.M. Sherif, S.M.A. Khan Mohammed, M. Baig, M.A. Alam, and N. Alharthi, PLOS One. 13(4), 1 (2018). https://doi. org/10.1371/journal.pone.0195224
H.T. Liu, C.X. Yang, H.H. Liang, J. Yang, and W.F. Zhou, J. Power Sources. 103(2), 173 (2002). https://doi.org/10.1016/S0378-7753(01)00839-4
W.-B. Cai, Y.-Q. Wan, H.-T. Liu, and W.-F. Zhou, Chin. J. Chem. 14(2), 138 (1996). https://doi.org/ 10.1002/cjoc.19960140208
T. Hirasawa, K. Sasaki, M. Taguchi, and H. Kaneko, J. Power Sources. 85(1), 44 (2000). https://doi.org/10.1016/S0378-7753(99)00380-8
M. Viespoli, A. Johanson, A. Alvaro, B. Nyhus, A. Sommacal, and F. Berto, Mater. Sci. Eng. A 744, 365 (2019). https://doi.org/10.1016/j.msea.2018.12.039
T. Gancarz and W. Gasior, J. Chem. Eng. Data. 63(5), 1471-1479 (2018). https://doi.org/10.1021/acs.jced.7b01049
S.E. Kisakurek, J. Mater. Sci. 19(7). 2289-2305 (1984). https://doi.org/10.1007/BF01058106
R.D. Prengaman, J. Power Sources. 67(1-2), 267-278 (1997). https://doi.org/10.1016/S0378-7753(97)02512-3
K. Sawai, Y. Tsuboi, Y. Okada, M. Shiomi, and S. Osumi, J. Power Sources. 179(2), 799-807 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.106
D.A.J. Rand, D.P. Boden, C.S. Lakshmi, R.R. Nelson, and R.D. Prengaman, J. Power Sources. 107(2), 280-300 (2002). https://doi.org/10.1016/S0378-7753(01)01083-7
R.D. Prengaman, J. Power Sources. 95(1-2), 224-233 (2001). https://doi.org/10.1016/S0378-7753(00)00620-0
A.G. Gad Allah, H.A.A. El-Rahman, S.A. Salih, and M.A. El-Galil, J. Appl. Electrochem. 22(6), 571-576 (1992). https://doi.org/10.1007/BF01024099
H. Li, W.X. Guo, H.Y. Chen, D.E. Finlow, H.W. Zhou, C.L. Dou, G.M. Xiao, S.G. Peng, W.W. Wei, and H. Wang, J. Power Sources. 191(1), 111-118 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.059
R.K. Shervedani, A.Z. Isfahani, R. Khodavisy, and A. Hatefi-Mehrjardi, J. Power Sources. 164(2), 890-895 (2007). https://doi.org/10.1016/ j.jpowsour.2006.10.105
M. Matrakova, A. Aleksandrova, P. Nikolov, O. Saoudi, and L. Zerroual, Bulg. Chem. Commun. 52(A), 74-79 (2020). https://doi.org/10.34049/bcc.52.A.232 74
S. Khatbi, Y. Gouale, S. Mansour, A. Lamiri, and M. Essahli, Port. Electrochim. Acta. 36(2). 133-146 (2018). https://doi.org/10.4152/pea.201802133
Y.B. Zhou, C.X. Yang, W.F. Zhou, and H.T. Liu, J. Alloys Compd. 365(1-2), 108-111 (2004). https://doi.org/10.1016/S0925-8388(03)00649-2
B. Yang, C. Xianyu, Y. Shaoqiang, L. Wei, D. Changsong, and Y. Geping, J. Energy Storage. 25, 100908 (2019). https://doi.org/10.1016/j.est.2019.100908
Z. Ghasemi and A. Tizpar, Int. J. Electrochem. Sci. 2, 700-720 (2007). https://doi.org/10.1016/S1452-3981(23)17106-9
Z. Ghasemi and A. Tizpar, Int. J. Electrochem. Sci. 3, 727-745 (2008). https://doi.org/10.1016/S1452-3981(23)15476-9
Z. Ghasemi and A. Tizpar, Appl. Surf. Sci. 252(10), 3667-3672 (2006). https://doi.org/10.1016/j.apsusc.2005.05.043
D. Slavkov, B.S. Haran, B.N. Popov, and F. Fleming, J. Power Sources. 112(1), 199-208 (2002). https://doi.org/10.1016/S0378-7753(02)00368-3
E. Rocca, G. Bourguignon, and J. Steinmetz, J. Power Sources. 161(2), 666-675 (2006). http://dx.doi.org/10.1016/ j.jpowsour.2006.04.140
C.S. Lakshmi, J.E. Manders, and D.M. Rice, J. Power Sources. 73(1), 23-29 (1998). https://doi.org/10.1016/S0378-7753(98)00018-4
M.T. Wall, Y. Ren, T. Hesterberg, T. Ellis, and M.L. Young, J. Energy Storage. 55, 105569 (2022). https://doi.org/10.1016/j.est.2022.105569
S. O’Dell, G. Ding, and S. Tewari, Metall. Mater. Trans. A 30(8), 2159-2165 (1999). https://doi.org/10.1007/s11661-999-0027-7
N. Ryoichi, Bull. Univ. Osaka Prefect. A 16(1), 145-157 (1967). http://doi.org/10.24729/00008892
S. El-Gamal, Gh. Mohammed, and E.E. Abdel-Hady, Am. J. Mater. Sci. 5(5), 97-105 (2015). https://doi.org/ 10.5923/j.materials.20150505.01
M.M. El-Sayed, F. Abd El-Salam, R. Abd El-Hasseb, and M.R. Nagy, Phys. Status Solidi. A 144(2), 329-334 (1994). https://doi.org/10.1002/pssa.2211440211
J.P. Hilger, J. Power Sources. 53(1), 45-51 (1995). https://doi.org/10.1016/0378-7753(94)01977-4
G.S. Al-Ganainy, M.T. Mostafa, and F. Abd El-Salam, Physica. B 348(1-4), 242-248 (2004). https://doi.org/10.1016/ j.physb.2003.11.096
О.V. Sukhova and Yu.V. Syrovatko, Metallofiz. Noveishie Technol. 33(Special Issue), 371-378 (2011). (in Russian)
I.M. Spiridonova, E.V. Sukhovaya, and V.P. Balakin, Metallurgia. 35(2), 65-68 (1996).
R.D. Prengaman, J. Power Sources. 53(2), 207-214 (1995). http://dx.doi.org/10.1016/0378-7753(94)01975-2
I. Spiridonova, O.V. Sukhova, and A. Vashchenko, Metallofiz. Noveishie Technol. 21(2), 122-125 (1999).
G.S. Al-Ganainy, M.T. Mostafa, and M.R. Nagy, Phys. Stat. Sol. A 165(1), 185-193 (1998). https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<185::AID-PSSA185>3.0.CO;2-M
О.V. Sukhova, V.А. Polonskyy, and К.V. Ustinоvа, Vopr. Khimii Khimicheskoi Tekhnologii. 3, 46-52 (2019). http://dx.doi.org/ 10.32434/0321-4095-2019-124-3-46-52. (in Ukrainian)
Y. Zhang, K. Shimizu, X. Year, K. Kusumoto, and V.G. Efremenko, Wear. 390-391, 135-145 (2017). https://doi.org/10.1016/ j.wear.2017.07.017
О.V. Sukhova and К.V. Ustinоvа, Funct. Mater. 26(3), 495-506 (2019). https://doi.org/10.15407/fm26.03.495
E. Gullian, L. Albert, and J.L. Caillerie, J. Power Sources. 116(1-2), 185-192 (2003). http://dx.doi.org/10.1016/S0378-7753(02)00705-X
O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova, Voprosy Khimii i Khimicheskoi Technologii. 6, 77-83 (2018). https://doi.org/10.32434/0321-4095-2018-121-6-77-83. (in Ukrainian)
S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Mater. Sci. 56(2), 263-272 (2020). https://doi.org/ 10.1007/s11003-020-00428-8
О.V. Sukhova, Phys. Chem. Solid St. 22(1), 110-116 (2021). https://doi.org/10.15330/pcss.22.1.110-116
L. Albert, A. Goguelin, and E. Jullian, J. Power Sources. 78(1-2), 23-29 (1999). https://doi.org/10.1016/S0378-7753(99)00006-3
О.V. Sukhova and V.А. Polonskyy, East Eur. J. Phys. 3, 5-10 (2020). https://doi.org/10.26565/2312-4334-2020-3-01
О.V. Sukhova, Probl. At. Sci. Technol. 4, 77-83 (2020). https://doi.org/10.46813/2020-128-077
D.M. Rosa, J.E. Spinelli, I.L. Ferreira, and A. Garcia, Metall. Mater. Trans. A 39(9), 2161-2174 (2008). https://doi.org/ 10.1007/s11661-008-9542-1
О.V. Sukhova, V.А. Polonskyy, and К.V. Ustinоvа, Mater. Sci. 55(2), 285-292 (2019). https://doi.org/10.1007/s11003-019-0030-2
V.A. Dzenzerskiy, V.F. Bashev, V.A. Polonskiy, S.V. Tarasov, Yu.I. Kazacha, V.A. Ivanov, and A.A. Kostina, Metallofiz. Noveishie Tekhnol. 36(2), 259-273 (2014). https://doi.org/10.15407/mfint.36.02.0259
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).