The Role of Surface in Hydride Formation Processes
Abstract
Several LaNi5-based hydrogen storage alloys were studied using secondary ion mass spectrometry (SIMS) technique. Ar+ ions with the energy of 10 - 18 keV were used as primary ions. The study of the initial stages of the processes of LaNi5-based alloys interaction with hydrogen under the experimental conditions showed that on the areas of clean surface, hydrogen formed chemical compounds with the both of the main components of the alloy: nickel and lanthanum. As hydrogen accumulates on the surface and in the near-surface region, a hydrogen-containing structure is formed, which is characterized by a certain stoichiometric ratio of components. Nickel in this structure has strong chemical bonds with two hydrogen atoms, and lanthanum – with two or more hydrogen atoms. Along with such compounds, some structures with lower hydrogen content are also formed. The formed hydrogen-containing structure includes both main alloy components, La and Ni for all the studied samples, even though only lanthanum is generally accepted to be the hydride-forming element in such alloys. The SIMS studies of the chemical composition of the surface monolayers of the intermetallic alloy LaNi5, in the process of its interaction with oxygen, showed the following. As a result of the oxygen interaction with the alloy, a complex chemical structure including oxygen, lanthanum and nickel is formed on the surface and in the near-surface region of LaNi5. Oxygen in such a structure, similarly to hydrogen, forms strong chemical bonds with both components of the alloy. This is indicated by the presence in the mass spectra of a large set of oxygen-containing emissions of positive and negative secondary ions with lanthanum and nickel, as well as oxygen-containing lanthanum-nickel cluster secondary ions. The formed oxide compounds have a three-dimensional structure and occupy tens of monolayers. Oxygen poisoning of the surface of the hydride-forming alloy LaNi5 can occur regardless of whether the surface of the alloy was clean from the very beginning or it was covered with a layer of hydrogen-containing chemical compounds.
Downloads
References
B.P. Tarasov, M.V. Lototsky, V.A. Yartys, Russian Chem. J. L(6), 34-48 (206). (In Russian).
G. Sandrock, J. Alloy Compd. 293–295, 877 (1999), https://doi.org/10.1016/S0925-8388(99)00384-9.
P. Dantzer, in: Hydrogen in Metals. III. Properties and Applications, (Springer-Verlag, Berlin – Heidelberg, 1997), pp. 279 340, https://doi.org/10.1007/bfb0103405
V.M. Azhazha, M.A. Tikhonovsky, A.G. Shepelev, Yu.P. Kurilo, T.A. Ponomarenko, and D.V. Vinogradov, PAST, 1, 145-152 (2006), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2006_1/article_2006_1_145.pdf (in Russian)
B.A. Kolachev, R.E. Shalin, and A.A. Ilyin, Hydrogen storage alloys, Reference edition (Metallurgia, Moscow, 1995). (in Russian).
B.P. Tarasov, V.V. Burnasheva, M.V. Lototsky, and V.A. Yartys, Alternative energy and ecology, 12(32), 14-37 (2005), (in Russian).
M.V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, Progress in Natural Science: Materials International, 27(1), 3-20 (2017), https://doi.org/10.1016/j.pnsc.2017.01.008
G. Sandrock, and R.C. Bowman Jr., J. of Alloys and Compounds, 356-357, 794-799 (2003), https://doi.org/10.1016/S0925-8388(03)00090-2
M.V. Lototskyy, V.A. Yartys, B.G. Pollet, and R.C. Bowman Jr, Int. J. of Hydrogen Energy, 39(11), 5818-5851 (2014), https://doi.org/10.1016/j.ijhydene.2014.01.158
S. Fukada, Y. Toyoshima, and M. Nishikawa, Fusion Engineering and Design, 49-50, 805 (2000) https://doi.org/10.1016/s0920-3796(00)00192-7
K.J. Maynard, N.P. Kherani, and W.T. Shmayda, Fusion Technology, 28(3P2), 1546-1551 (1995), https://doi.org/10.13182/FST95-A30632
W.T. Shmayda, N.P. Kherani, and A.G. Heics, J. Vac. Sci. Technol. A, 6(3), 1259 (1988), https://doi.org/10.1116/1.575685
G.R. Longhurst, R.A. Jalbert, and R.L. Rossmassler, Fusion Technology, 15(2P2B), 1331-1336 (1989), https://doi.org/10.13182/fst89-a39873
M.V. Lototsky , V.A. Yartys, Ye.V. Klochko, and V.N. Borisko, J. of Alloys and Compound, 404-406, 724-727 (2005), https://doi.org/10.1016/j.jallcom.2005.02.086
I.N. Sereda, E.V. Klochko, and A.F. Tseluiko, PAST, 4, 155 (2008), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2008_4/article_2008_4_155.pdf (In Russian).
D.P. Broom Hydrogen Storage Materials: The Characterisation of Their Storage Properties, (Springer, London, 2011), https://doi.org/10.1007/978-0-85729-221-6
G.D. Sandrock, and P.D. Goodell, J. Less Common Metals, 73(1), 161-168 (1980), https://doi.org/10.1016/0022-5088(80)90355-0
G.D. Sandrock, and P.D. Goodell, J. Less-Common Metals, 104, 159-173 (1984), https://doi.org/10.1016/0022-5088(84)90452-1
J.H.N. van Vucht, F.A. Kuijpers, and H.C.A.M. Bruning, Philips Research Report, 25(2), 133-140 (1970). OSTI Identifier: 4129528.
L. Schlapbach, A. Seiler, H.C. Siegmann, T.V. Waldkirch, P. Zucher, and C.R. Brundle, Int. J. of Hydrogen Energy, 4(1), 21-28 (1979), https://doi.org/10.1016/0360-3199(79)90126-5
Th. von Waldkirch, and P. Zurcher, Appl. Phys. Lett. 33, 689-691 (1978), https://doi.org/10.1063/1.90531
V.T. Cherepin, Ion probe, (Naukova Dumka, Kyiv, 1981). (in Russian)
M. Schülke, H. Paulus, M. Lammers, G. Kiss, F. Réti, and K.H. Müller, Annal Bioanal. Chem. 390(6), 1495-1505 (2008), https://dx.doi.org/10.1007/s00216-007-1797-7
G. Kiss, H. Paulus, O. Krafcsik, F. Réti, K.-H. Müller, and J. Giber, Fresenius J Anal Chem, 365, 203–207 (1999). https://doi.org/10.1007/s002160051473
M.H. Mintz, I. Jacob, and D. Shaltiel, Topics in Applied Physics, 67, 285-317 (2002), https://doi.org/10.1007/3-540-54668-5_14
В.Т. Черепин, М.А. Васильев Методы и приборы для анализа поверхности материалов: Справочник, (Киев: Наукова думка), (1982). (In Russian).
I.A. McHugh, in: Secondary Ion Mass Spectrometry, (Mir, Moscow, 1979), pp. 276-342. (In Russian).
V.I. Veksler, Secondary ion emission of metals, (Nauka, Moscow, 1978). (In Russian).
Ya.M. Fogel', International Journal of Mass Spectrometry and Ion Physics, 9(2), 109-125 (1972), https://doi.org/10.1016/0020-7381(72)80037-8
V.A. Litvinov, V.T. Koppe, and V.V. Bobkov, Bulletin of the Russian Academy of Sciences: Physics, 76(5), 553–557 (2012), https://doi.org/10.3103/S1062873812050152
P. Dantzer, Materials Science and Engineering, A329–331, 313–320 (2002), https://doi.org/10.1016/S0921-5093(01)01590-8
E.E. Shpilrain, S.P. Malyshenko, and G.G. Kuleshov, Introduction to hydrogen power engineering, (Energoatomizdat, Moscow, 1984). (In Russian).
S. Luo, J.D. Clewley, T.B. Flanagan, R.C. Bowman Jr., and L.A. Wade, J. Alloys Comp. 267(1-2), 171-181 (1998), https://doi.org/10.1016/S0925-8388(97)00536-7
H. Züchner, R. Dobrileit, and T. Rauf, Fresenius J Anal Chem. 341, 219-232 (1991), https://doi.org/10.1007/BF00321552
H. Züchner, P. Kock, T. Bruning, and T. Rauf, J. Less Common Metals, 172-174(Part A), 95-106 (1991), https://doi.org/10.1016/0022-5088(91)90437-9
H. Zuchner, J. Kintrup, R. Dobrileit, and I. Untiedt, J. Alloys Comp, 293-295, 202-212 (1999), https://doi.org/10.1016/S0925-8388(99)00420-X
D. Lebiedz, H. Zuchner, and O.A Gutfleisch, J. Alloys Comp, 356-357, 679-682 (2003), https://doi.org/10.1016/S0925-8388(03)00288-3
R. Dobrileit, and H. Zuchner, Z. Naturforsch, 50(6), 533 (1995), https://doi.org/10.1515/zna-1995-0604
V.A. Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, 12(3), 576-583 (2018), https://doi.org/10.1134/S1027451018030321
V.A. Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, (Interaction of ions with a surface VIP-2017, Moscow), 2, 52-55 (2017), (In Russian), http://plasma.mephi.ru/ru/uploads/files/conferences/ISI_2017/ISI_2017_Tom_2.pdf
V.A. Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, Ukr. J. Phys, 62(10), 845-857 (2017), https://doi.org/10.15407/ujpe62.10.0845
V.A. Litvinov, A.G. Koval, and B.M. Fizgeer, Izvestiia AN SSSR: Ser. Phys. 55(12), 2423-2426 (1991). (In Russian).
B.A. Kolachev, A.A. Ilyin, V.A. Lavrenko, and V. Levinsky, Hydride Systems: A Handbook. (Metallurgiia, Moscow, (1992).
A.N. Perevezentsev, B.M. Andreev, V.K. Kapyshev, L.A. Rivkis, M.P. Malek, V.M. Bystritsky, and V.A. Stolupin, Physics of elementary particles and the atomic nucleus, 19(6), 1386-1439 (1988). (In Russian).
T. Takeshita, S.K. Malik, and W.E. Wallace, J. of Solid-State Chemistry, 23(3-4), 271-274 (1978), https://doi.org/10.1016/0022-4596(78)90074-9
M.H. Mendelsohn, D.M. Gruen, and A.E. Dwight, J. Less Common Metals, 63(2), 193-207 (1979), https://doi.org/10.1016/0022-5088(79)90243-1
L.G. Shcherbakova, Yu.M. Solonin, and Ye.N. Severyanina, Carbon Nanomaterials in Clean Energy Hydrogen Systems, 645, 644-652 (2008), https://doi.org/10.1007/978-1-4020-8898-8_80
H. Diaz, A. Percheron-Guégan, J.C. Achard, C. Chatillon, and J.C. Mathieu, Int. J. of Hydrogen Energy, 4(5), 445-454 (1979), https://doi.org/10.1016/0360-3199(79)90104-6
P.D. Goodell, J. Less Common Metals, 89(1), 45-54 (1983). https://doi.org/10.1016/0022-5088(83)90247-3
K. Suzuki, K. Ishikawa, and K. Aoki, Material Transactions JIM, 41(5), 581-584 (2000), https://doi.org/10.2320/matertrans1989.41.581
J.I. Han, and J.Y. Lee, J. of the Less Common Metals, 152(2), 329-338 (1989), https://doi.org/10.1016/0022-5088(89)90100-8
P. Dantzer, J. of the Less Common Metals, 131, 349-363 (1987), https://doi.org/10.1016/0022-5088(87)90534-0
R.C. Bowman, D.M. Gruen, and M.H. Mendelsohn, Solid State Communications, 32(7), 501-506 (1979), https://doi.org/10.1016/0038-1098(79)90362-4
R.C Bowman Jr., B.D Craft, A. Attalla, M.H. Mendelsohn, and D.M. Gruen, J. of the Less Common Metals, 73(2), 227-232 (1980), https://doi.org/10.1016/0022-5088(80)90307-0
C.E. Lundin, F.E. Lynch, and C.B. Magee, J. of the Less Common Metals, 56(1), 19-37 (1977), https://doi.org/10.1016/0022-5088(77)90215-6
W.E. Wallace, E.B. Boltich, J. of Solid State Chemistry, 33(3), 435-437 (1980), https://doi.org/10.1016/0022-4596(80)90168-1
C. Lartigue, A. Percheron-Guegan, J.C. Achard, J. of the Less Common Metals, 75, 23-29 (1980), https://doi.org/10.1016/0022-5088(80)90365-3
L. Schlapbach, A. Seiler, F. Stucki, and H.C Siegmann, J. Less Common Metals, 73, 145-160 (1980), https://doi.org/10.1016/0022-5088(80)90354-9
A.A. Radzig, and B.M. Smirnov, Handbook of atomic and molecular physics, (Atomizdat, Moscow, 1980). (In Russian).
V.A. Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, Ion-Surface Interactions ISI – 2019, (Moscow, 2019), 2, pp. 71 74.
V.A. Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 14(6), 1358–1365. (2020), https://doi.org/10.1134/S102745102006035X
P. Selvam, B. Viswanathan, C.S. Swamy, and V. Srinivasan, J. Less Common Metals, 163, 89-108 (1990), https://doi.org/10.1016/0022-5088(90)90088-2
P.D. Goodell, J. Less Common Metals, 89(1), 45-54 (1983), https://doi.org/10.1016/0022-5088(83)90247-3
H.C. Siegmann, L. Schlapbach, and C.R. Brundle, Phys. Rev. Let. 40(14), 972-975 (1978), https://doi.org/10.1103/PhysRevLett.40.972
F. Stucki, and L. Schlapbach, J. Less Common Metals, 74(1), 143-151 (1980), https://doi.org/10.1016/0022-5088(80)90084-3
L. Schlapbach, F. Stucki, A. Seiler, and H.C. Siegmann, Surf. Sci., 106(1-3), 157-159 (1981), https://doi.org/10.1016/0039-6028(81)90194-1
L. Schlapbach, Solid State Communications, 38(2), 117-123 (1981), https://doi.org/10.1016/0038-1098(81)90802-4
W.E. Wallace, R.F. Karlicek, and H. Imamura, J. Phys. Chem. 83(13), 1708-1712 (1979), https://doi.org/10.1021/j100476a006
J.H. Weaver, A. Franciosi, W.E. Wallace, and H.K. Smith, J. App. Phys. 51, 5847-5851 (1980), https://doi.org/10.1063/1.327544
J.H. Weaver, A. Franciosi, D.J. Peterman, T. Takeshita, and K.A. Gschneidner Jr., J. Less Common Metals, 86, 195-202 (1982), https://doi.org/10.1016/0022-5088(82)90205-3
P. Selvam, B. Viswanathan, and V. Srinivasan, Jnt. J. Hydrogen Energy, 14(9), 687-689 (1989), https://doi.org/10.1016/0360-3199(89)90048-7
P. Selvam, B. Viswanathan, C.S. Swamy, and V. Srinivasan, Int. J. Hydrogen Energy, 16(1), 23-33 (1991), https://doi.org/10.1016/0360-3199(91)90057-P
R. Berish, editor, Sputtering of solids by ion bombardment. Issue 1, Physical spraying of single-element solids, (Mir, Moscow, 1984). (In Russian).
S.P. Holland, B.J. Garrison, and N. Winograd, Phys. Rev. Letters, 44, 756-759 (1980), https://doi.org/10.1103/PhysRevLett.44.756
P. Joyes, J. Physique, 44, 221-227 (1983), https://doi.org/10.1051/jphys:01983004402022100
N. Winograd, B. J. Garrison, T. Fleisch, W. N. Delgass, D. E. Jr. Harrison, J. Vac. Sci. Technol., 16, 629-634 (1979), https://doi.org/10.1116/1.570017
B.J. Garrison, N. Winograd, D.E. Jr. Harrison, J. Chem. Phys., 69, 1440-1444 (1978), https://doi.org/10.1063/1.436767.
V.A Litvinov, I.I. Okseniuk, D.I. Shevchenko, and V.V. Bobkov, East European Journal of Physics, 3, 30-36 (2021), https://doi.org/10.26565/2312-4334-2021-3-04
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).