Optical and Magnetic Response of Pure and CU-Ions Substituted Dysprosium Oxide Thin Films for Various Applications

  • Muhammad Tauseef Qureshi Basic Science Department, College of Preparatory Year, University of Ha’il, Ha’il, Kingdom of Saudi Arabia https://orcid.org/0000-0001-6588-3586
Keywords: Magnetron sputtering, Dy2O3, Cu/Dy2O3, Thin films, Tauc plot, Magnetic properties, Hysteresis loop


Dysprosium oxide (Dy2O3) and Cu/Dy2O3 thin films of thickness 117.14 nm and 258.30 nm, respectively were successfully deposited via a well-known DC-magnetron sputtering technique. Field emission scanning electron microscopy clarifies the growth of uniform and fine granular particles on silicon substrate. The hexagonal closed pack structure for both the thin films has been observed by the x-ray diffraction analysis and it was observed that by inclusion of copper the HCP structure of thin film was retain with a slight shift in the main peak. The reduction from 3.9 eV to 3.8 eV in the energy band gap value was observed by incorporation of copper ions Dy2O3 thin films. The M-H loops obtained through Vibrating Sample Magnetometer (VSM) shows that Dy2O3 thin film behave ferromagnetically at low temperature with a saturation magnetization value of 2860 emu/cc and evolves through its phase transition temperatures and behave paramagnetically at room temperature. In Cu/Dy2O3 case, the diamagnetic response of Cu dominates and produces reverse hysteresis loop at both temperatures make it a suitable candidate for energy and memory storage devices applications.


Download data is not yet available.


F. Schatz, M. Hirscher, G. Flik, and H. Kronmüller, Physica Status Solidi, 137(1), 197 (1993). https://doi.org/10.1002/pssa.2211370117

G. Flik, M. Schnell, F. Schatz, and M.B. Hirscher, in: Proc. Actuator 94, (Bremen, Germany, 1994), p. 232.

J.Y. Kim, J. Appl. Phys. 74, 2701 (1993). https://doi.org/10.1063/1.354664

R. Jain, V. Luthra, and S. Gokhale, J. Mag. and Mag. Mater. 456, 179 (2018). https://doi.org/10.1016/j.jmmm.2018.02.029

H. Fernández-Morán, Physics, 53, 445 (1965). https://doi.org/10.1073/pnas.53.2.445

A. Paulson, N.M. Sabeer, and P.P. Pradyumnan, Mater. Sci. & Engi. B, 262, 114745 (2020). https://doi.org/10.1016/j.mseb.2020.114745

A. Bulatov, S. Goridov, M. Tikhonovskij, and S. Novikov, IEEE Trans. Mag. 28, 509 (1992). https://doi.org/10.1109/20.119923

R. Agustsson, P. Frigola, A. Murokh, O. Chubar, and V. Solovyov, in: Proceedings of 2011 Particle Accelerator Conference, (New York, USA, 2011). pp. 1256-1258.

R. Agustsson, P. Frigola, A. Murokh, and V. Solovyov, in: Proceedings of PAC09, (Vancouver, Canada, 2009), WE5RFP077.

Z.S. Shan, and D.J. Sellmyer, J. Appl. Phys. 64, 5745 (1988). https://doi.org/10.1063/1.342245

N.D. Subramanian, J. Moreno, J.J. Spivey, and C.S. Kumar, J. Phys. Chem. C, 115, 14500 (2011). https://doi.org/10.1021/jp202215k

Z.S. Shan, S. Nafis, K.D. Aylesworth, and D.J. Sellmyer, J. Appl. Phys. 63, 3218 (1988).

A.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, M.A. Almessiere, Y. Slimani, A. Baykal, A.S.B. Sombra, et al., J. Alloys Compounds, 841, 155667 (2020). https://doi.org/10.1016/j.jallcom.2020.155667

K. Dumesnil, C. Dufour, P. Mangin, G. Marchal, and H. Hennion, Phys. Rev. B, 54, 6407 (1996). https://doi.org/10.1103/PhysRevB.54.6407

K. Dumesnil, C. Dufour, P. Mangin, G. Marchal, and H. Hennion, Europhys. Let. 31(1), 43 (1995). https://doi.org/10.1209/0295-5075/31/1/008

M. Elisa, R. Stefan, I.C. Vasiliu, M.I. Rusu, B.A. Sava, L. Boroica, M. Sofronie, et al., J. Non-cryst. Solids, 521, 119545 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119545

A.M. Henaish, O.M. Hemeda, E.A. Arrasheed, R.M. Shalaby, A.R. Ghazy, I.A. Weinstein, M.A. Darwish, et al., J. Compos. Sci. 7, 61 (2023). https://doi.org/10.3390/jcs7020061

G. Ganesh, A. Sandeep, G. Chanti, R.S. Bose, M.S. Kumar, K.P. Kumari, T. Shekharam, et al., Phys. Stat. solidi (a), 220(9), 2200864 (2023). https://doi.org/10.1002/pssa.202200864

G. Hussain, I. Ahmed, A.U. Rehman, M.U. Subhani, N. Morley, M. Akhtar, M.I. Arshad and H. Anwar, J. Alloys & Comp. 919, 165743 (2022). https://doi.org/10.1016/j.jallcom.2022.165743

T.H. Wu, J.C. Wu, B.M. Chen, and H.P.D. Shieh, J. Mag. Mag. Mater. 202, 62 (1999). https://doi.org/10.1016/S0304-8853(99)00140-7

S. Sugimoto, J. Phys. D: Appl. Phys. 44, 064001 (2011). https://doi.org/10.1088/0022-3727/44/6/064001

C.V. Mohan, and H. Kronmüller, J. Alloys Compounds, 267, L9 (1998). https://doi.org/10.1016/S0925-8388(97)00524-0

A.M. Tishin, and Y.I. Spichkin, The Magnetocaloric Effect and its Applications, (IOP Publishing Ltd., London, 2003).

S. Zhang, K. Hongshan, S. Lin, L. Xin, S. Quan, X. Gang, W. Qing, et al., Inorganic Chemistry, 55, 3865 (2016). https://doi.org/10.1021/acs.inorgchem.5b02971

V.P. Piskorskii, G.S. Burkhanov, O.G. Ospennikova, R.A. Valeev, I.S. Tereshina, and E.A. Davydova, Russian Metallurgy, 5, 442 (2010). https://doi.org/10.1134/S0036029510050150

Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, et al., Alloys & Comp. 797, 834 (2019). https://doi.org/10.1016/j.jallcom.2019.05.043

J. Kar, S. Kim, B. Shin, and J. Myong, Solid-State Electronics, 54, 1447 (2010). https://doi.org/10.1016/j.sse.2010.07.002

S. Horoz, S. Simsek, S. Palaz, A.M. Mamedov, E. Ozbay, International Journal of Scientific and Technological Research, 1, 36 (2015). https://www.iiste.org/Journals/index.php/JSTR/article/view/23009/23526

S.M. Ramay, A. Mahmood, H.M. Ghaithan, N.S. Al-Zayed, A. Aslam, A. Murtaza, N. Ahmad, et al., J. Rare Earths, 37, 989 (2019). https://doi.org/10.1016/j.jre.2018.12.002

P. Salunkhe, M.A.V. Ali, and D. Kekuda, Mater. Res. Exp. 7, 016427 (2020). https://doi.org/10.1088/2053-1591/ab69c5

P.S. Shewale, V.B. Patil, S.W. Shin, J.H. Kim, and M.D. Uplane, Sens. Actuators B: Chem. 186, 226 (2013). https://doi.org/10.1016/j.snb.2013.05.073

X.B. Wang, D.M. Li, F. Zeng, and F. Pan, J. Phys. D: Appl. Phys. 38, 4104 (2005). https://doi.org/10.1088/0022-3727/38/22/014

H. Gonga, J.Q. Hua, J.H. Wang, C.H. Onga, F.R. Zhub, Sens. Actuators B: Chem. 115, 247 (2006). https://doi.org/10.1016/j.snb.2005.09.008

F.Y. Lo, Y.C. Ting, K.C. Chou, T.C. Hsieh, C.W. Ye, Y.Y. Hsu, M.Y. Chern, and H.L. Liu, J. Appl. Phys. 117, 213911 (2015). https://doi.org/10.1063/1.4921979

S.E. Harrison, L.J. Collins-McIntyre, S.L. Zhang, A.A. Baker, A.I. Figueroa, A.J. Kellock, A. Pushp, J. Phys. Condens. Matter. 27, 245602 (2015). https://doi.org/10.1088/0953-8984/27/24/245602

K. Niira, Phys. Rev. 117, 129 (1960). https://doi.org/10.1103/PhysRev.117.129

M. Morishita, T. Abe, H. Yamamoto, A. Nozaki, and S. Kimura, Thermoch. Act, 721, 179410 (2023). https://doi.org/10.1016/j.tca.2022.179410

L.I. Naumova, M.A. Milyaev, R.S. Zavornitsyn, T.P. Krinitsina, V.V. Proglyado, and V.V. Ustinov, Curr. Appl. Phys. 19, 1252 (2019). https://doi.org/10.1016/j.cap.2019.08.012

K.P. Belov, R.Z. Levitin, and S.A. Nikitin, Soviet Physics Uspekhi, 7, 179 (1964). https://doi.org/10.1070/PU1964v007n02ABEH003660

How to Cite
Qureshi, M. T. (2023). Optical and Magnetic Response of Pure and CU-Ions Substituted Dysprosium Oxide Thin Films for Various Applications. East European Journal of Physics, (3), 308-313. https://doi.org/10.26565/2312-4334-2023-3-30