Thermoelectric Properties Investigation of Ni/Co Doped ZrCoBi Half-Heusler Alloy
Abstract
Half-Heusler (HH) thermoelectric (TE) composites have been extensively inspected due to their excellent TE properties in the medium- to high-temperature range. First-principle calculations make it easier to discover or improve more HH compounds. This article presents an ab initio theoretical evaluation of TE properties of Half-Heusler alloy, when doped with Nickel (Ni), using FP-LAPW and the semi classic Boltzmann theory. Thermoelectric parameters were calculated using BoltzTraP code, like Seebeck coefficient ( ), electrical conductivity to relaxation time ratio ( ), electronic thermal conductivity to relaxation time ratio ( ), thermoelectric power factor to relaxation time ratio ( ), and the dimensionless figure-of-merit ( ) in a temperature range of . Calculated Seebeck coefficient reveals that the studied alloys show a tendency to conduct as p-type with balanced TE performance between both charge carriers (holes and electrons). A high electronic thermal conductivity value is found, which predicts a potential use in heat sink applications for the investigated alloys. Obtained results, such as a high thermoelectric power factor and , postulate that alloys could have potential thermoelectric applications.
Downloads
References
M.M. Alam, M.A. Aktar, N.D.M. Idris, and A.Q. Al-Amin, J World Development Sustainability, 2, 100048 (2023), https://doi.org/10.1016/j.wds.2023.100048
C. Gayner, and K. K. Kar, J. Progress in Materials Science, 83, 330-382 (2016), https://doi.org/10.1016/j.pmatsci.2016.07.002
R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher and W. Zhang, J. Advanced Materials, 29(38), 1702712 (2017), https://doi.org/10.1002/adma.201702712
T. Zhu, C. Fu, H. Xie, Y. Liu and X. Zhao, Advanced Energy Materials, 5(19), 1500588 (2015), https://doi.org/10.1002/aenm.201500588
A. Mubarak, S. Saad, F. Hamioud and M. Al-Elaimi, J. Solid State Sciences, 111, 106397 (2021), https://doi.org/10.1016/j.solidstatesciences.2020.106397
J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang and X. Wang, J. Journal of Materials Science, 55, 12642-12704 (2020), https://doi.org/10.1007/s10853-020-04949-0
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang and H. Xie, J. Nano-Micro Letters, 12, 1-40 (2020), https://doi.org/10.1007/s40820-020-0374-x
P.A. Finn, C. Asker, K. Wan, E. Bilotti, O. Fenwick, and C.B. Nielsen, J. Frontiers in Electronic Materials, 1, 677845 (2021), https://doi.org/10.3389/femat.2021.677845
Y. Zheng, T.J. Slade, L. Hu, X.Y. Tan, Y. Luo, Z.-Z. Luo, J. Xu, Q. Yan and M. G. Kanatzidis, J. Chemical Society Reviews, 50 (16), 9022-9054 (2021), https://doi.org/10.1039/D1CS00347J
A. Kumar, S. Bano, B. Govind, A. Bhardwaj, K. Bhatt and D. Misra, J. of Electronic Materials 50, 6037-6059 (2021), https://doi.org/10.1007/s11664-021-09153-7
Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, and Y. Pei, J. Materials Today Physics, 9, 100096 (2019), https://doi.org/10.1016/j.mtphys.2019.100096
S. Roychowdhury, R.K. Biswas, M. Dutta, S.K. Pati, and K. Biswas, J. ACS Energy Letters, 4 (7), 1658-1662 (2019), https://doi.org/10.1021/acsenergylett.9b01093
S. Li, J. Yang, J. Xin, Q. Jiang, Z. Zhou, H. Hu, B. Sun, A. Basit, and X. Li, J. ACS Applied Energy Materials, 2 (3), 1997-2003 (2019), https://doi.org/10.1021/acsaem.8b02096
K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani and A. Hirohata, J. Science technology of advanced materials, 22 (1), 235-271 (2021), https://doi.org/10.1080/14686996.2020.1812364
K. Xia, C. Hu, C. Fu, X. Zhao and T. Zhu, J. Applied Physics Letters, 118 (14), 140503 (2021), https://doi.org/10.1063/5.0043552
F. Parvin, M. Hossain, I. Ahmed, K. Akter, and A. Islam, J. Results in Physics, 23, 104068 (2021), https://doi.org/10.1016/j.rinp.2021.104068
Z. Almaghbash, O. Arbouche, A. Dahani, A. Cherifi, M. Belabbas, A. Zenati, H. Mebarki, and A. Hussain, J. International Journal of Thermophysics, 42, 1-19 (2021), https://doi.org/10.1007/s10765-020-02755-z
S. Dhanal, A. Ghaste, V. Akkimardi, S. Kori, and C. Bhosale, AIP Conference Proceedings, 2162(1), 020002 (2019), https://doi.org/10.1063/1.5130212
V.K. Solet, S. Sk, and S.K. Pandey, J. Physica Scripta, 97(10), 105711 (2022), https://doi.org/10.1088/1402-4896/ac93c1
T. Graf, C. Felser and S.S. Parkin, J. Progress in solid state chemistry, 39(1), 1-50 (2011), https://doi.org/10.1016/j.progsolidstchem.2011.02.001
G.A. Naydenov, P.J. Hasnip, V. Lazarov, and M. Probert, J. Journal of physics: Materials, 2(3), 035002 (2019), https://doi.org/10.1088/2515-7639/ab16fb
M.K. Bamgbose, J. Applied Physics A, 126(564), 1-8 (2020), https://doi.org/10.1007/s00339-020-03691-3
D. Vishali, and R. John, J. Journal of Crystal Growth, 583, 126556 (2022), https://doi.org/10.1016/j.jcrysgro.2022.126556
W.Y.S. Lim, D. Zhang, S.S.F. Duran, X.Y. Tan, C.K.I. Tan, J. Xu, and A. Suwardi, J. Frontiers in Materials, 8, 745698 (2021), https://doi.org/10.3389/fmats.2021.745698
R. Majumder, M.M. Hossain, and D. Shen, J. Modern Physics Letters B, 33(30), 1950378 (2019), https://doi.org/10.1142/S0217984919503780
E. Rausch, B. Balke, S. Ouardi and C. Felser, J. Energy Technology, 3 (12), 1217-1224 (2015), https://doi.org/10.1002/ente.201500183
A.S. Gzyl, A.O. Oliynyk, and A. Mar, J. Crystal Growth Design, 20(10), 6469-6477 (2020), https://doi.org/10.1021/acs.cgd.0c00646
M. Sato, Y.W. Chai, and Y. Kimura, ACS Appl. Mater. Interfaces, 13(21), 25503-25512 (2021), https://doi.org/10.1021/acsami.1c03525
T. Chibueze, A. Raji, and C. Okoye, J. Phys. Chem. Solids, 139, 109328 (2020), https://doi.org/10.1016/j.jpcs.2019.109328
X. Zhang, S. Li, B. Zou, P. Xu, Y. Song, B. Xu, Y. Wang, G. Tang, and S. Yang, J. of Alloys and Compounds, 901, 163686 (2022), https://doi.org/10.1016/j.jallcom.2022.163686
A. Mubarak, S. Tariq, F. Hamioud, and B. Alsobhi, Journal of Physics: Condensed Matter, 31(50), 505705 (2019), https://doi.org/10.1088/1361-648X/ab3140
M.T. Qureshi, F. Ullah, R.S.A. Hameed, M. Al-Elimi, J. Humadi, A. Nassar, M. Badr, K.A. Halim, and M. Saleem, J. Ceramics International, (2023), https://doi.org/10.1016/j.ceramint.2023.03.103
L. Huang, Q. Zhang, Y. Wang, R. He, J. Shuai, J. Zhang, C. Wang, and Z. Ren, J. Physical Chemistry Chemical Physics, 19(37), 25683-25690 (2017), https://doi.org/10.1039/C7CP04801G
N. Nenuwe, and E. Omugbe, J. Current Applied Physics, 49, 70-77 (2023), https://doi.org/10.1016/j.cap.2023.02.013
Y. Dhakshayani, G. Suganya, and G. Kalpana, Journal of Crystal Growth, 583, 126550 (2022), https://doi.org/10.1016/j.jcrysgro.2022.126550
N. Ibrahim, R.A. Ahmed, H. Adri, and I. Reisya, J. Materials Today Communications, 32, 103908 (2022), https://doi.org/10.1016/j.mtcomm.2022.103908
H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu and Z. Tang, J. Nature communications, 9(1), 1-9 (2018), https://doi.org/10.1038/s41467-018-04958-3
M. Yazdani-Kachoei, and S. Jalali-Asadabadi, Journal of alloys compounds, 828, 154287 (2020), https://doi.org/10.1016/j.jallcom.2020.154287
H. Zhu, J. Mao, Z. Feng, J. Sun, Q. Zhu, Z. Liu, D.J. Singh, Y. Wang, and Z. Ren, J .Science advances, 5(6), eaav5813 (2019), https://doi.org/10.1126/sciadv.aav5813
M. Al-Elaimi, East Eur. J. Phys. (2), 103-111 (2022), https://doi.org/10.26565/2312-4334-2022-2-13
P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, J. Computer physics communications, 59(2), 399-415 (1990), https://doi.org/10.1016/0010-4655(90)90187-6
P. Hohenberg, and W. Kohn, J. Physical Review, 136(3B), B864 (1964), https://doi.org/10.1103/PhysRev.136.B864
J.P. Perdew, K. Burke, and M. Ernzerhof, J. Physical review letters, 77(18), 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865
G.K. Madsen, and D.J. Singh, J, Computer physics communications, 175(1), 67-71 (2006), https://doi.org/10.1016/j.cpc.2006.03.007
M. Cutler, and N. F. Mott, J. Physical Review, 181(3), 1336 (1969), https://doi.org/10.1103/PhysRev.181.1336
Copyright (c) 2023 Mahmoud Al-Elaimi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).