Effects of Gravitational Field of a Topological Defect on Statistical Properties of Heavy Quark-Antiquark Systems

  • André Likéné Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon https://orcid.org/0000-0003-2642-7400
  • Ali Zarma Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon
  • Dieudonné Ongodo Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon
  • Jean Marie Ema'a Ema'a Ngaoundere Higher Teachers' Training College, Department of Physics, University of Maroua, Bertoua, Cameroon https://orcid.org/0000-0002-6162-7961
  • Patrice Abiama Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon; The Nuclear Technology Section (NTS), Institute of Geological and Mining Research, Yaounde, Cameroon
  • Germain Ben-Bolie Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon https://orcid.org/0000-0002-0564-4548
Keywords: Thermodynamic properties, Quark, Schrödinger wave equation, Topological defect, space-time, cosmic string, extended Cornel potential, Extended Nikiforov-Uvarov method

Abstract

In this paper, we determine eigen energies, eigenfunctions and statistical properties of non-relativistic heavy quarkonia interacting with the extended Cornel potential within a space-time generated by a cosmic-string. We extend the Cornel potential by adding the inverse square potential plus the quadratic potential. We have calculated the energy eigenvalues and the corresponding eigenstates using the Extended Nikiforov-Uvarov (ENU) method. Then, based on the equation of energy spectra, the thermodynamic properties like partition function, entropy, free energy, mean energy and specific heat capacity are calculated within the space-time of a cosmic-string. In the next step, we investigate the influence of the cosmic-string parameter on quantum states of heavy quarkonia and their statistical properties.

Downloads

Download data is not yet available.

References

L.R. Ribeiro et al, Phys. Lett. A, 348, 135 (2006). https://doi.org/10.1016/j.physleta.2005.08.046

K. Bakke, Int. J. Mod. Phys. A, 26, 4239 (2011). https://doi.org/10.1142/S0217751X11054437

Y. Aharonov, and D. Bohm, Phys. Rev. 115, 485 (1959). https://doi.org/10.1103/PhysRev.115.485

K.W.B. Kibble, J. Phys. A: Math. Gen. 9(8), 1387 (1976). https://doi.org/10.1088/0305-4470/9/8/029

K.W.B. Kibble, Phys. Rev. D, 26(2), 435 (1982). https://doi.org/10.1103/PhysRevD.26.435

A. Vilenkin, and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, (Cambridge University Press, Cambridge, U.K., 1994).

J. Rocher, Thèse de Doctorat, Contraintes cosmologiques sur la physique de l'univers primordial, Universit de Paris XI-Orsay, 2005.

L. Bergström, and A. Goobar, Cosmology and Particle Astrophysics, 2nd edition (Springer, 2006).

A.-C. Davis, and T.W. Kibble, Contemp. Phys. 46, 313 (2005). https://doi.org/10.1080/00107510500165204

N.G. Marchuk, Nuovo. Cimento. B, 115, 11 (2000). https://doi.org/10.48550/arXiv.math-ph/0010045

C. Furtado, V.B. Bezerrae, and F. Moraes, Phys. Lett. A, 289, 160 (2001). https://doi.org/10.1016/S0375-9601(01)00615-6

C. Furtado, B.G.C. da Cunha, F. Moraes, E.R.B. Mello, and V.B. Bezzerra, Phys. Lett. A, 195, 90 (1994), https://doi.org/10.1016/0375-9601(94)90432-4

J. Audretsch, and A. Economou, Phys. Rev. D, 44, 3774 (1991). https://doi.org/10.1103/PhysRevD.44.3774

D.D. Harari, and V.D. Skarzhinsky, Phys. Lett. B, 240, 322 (1990). https://doi.org/10.1016/0370-2693(90)91106-L

J.R. Gott III, Astrophys. 288, 422 (1985). https://adsabs.harvard.edu/pdf/1985ApJ...288..422G

V.B. Bezerra, Phys. Rev. D, 35, 2031 (1987). https://doi.org/10.1103/PhysRevD.35.2031

W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, (World Scientific Singapore, 2010), pp. 416.

U. Kalade, and B.K. Patra, Phys. Rev. C, 92, 024901 (2015). https://doi.org/10.1103/PhysRevC.92.024901

T. Matsui, and H. Satz, Phys. Lett. B, 178, 416 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

R.C. Hwa, and X.N. Wang, editors, Quark-Gluon Plasma 3, (World Scientific Publishing, 2004), pp. 788.

V.S. Filinov, M. Bonitz, Y.B. Ivanov, M. Ilgenfritz, and V.E. Fortov, Contrib. Plasma Phys. 55, 203 (2015). https://doi.org/10.1002/ctpp.201400056

M. Schleif, and R. Wunsch, Eur. Phys. J. A, 1, 171 (1998). https://doi.org/10.1007/s100500050046

M. Abu-Shady, Inter. J. Theor. Phys. 52, 1165 (2013). https://doi.org/10.1007/s10773-012-1432-z

M. Abu-Shady, Inter. J. Theor. Phys. 54, 1530 (2015). https://doi.org/10.1007/s10773-014-2352-x

D. Nga Ongodo, J.M. Ema'a Ema'a, P. Ele Abiama, and G.H. Ben-Bolie, Int. J. Mod. Phys. E, 28, 1950106 (2019). https://doi.org/10.1142/S0218301319501064

Al-Jamel, Mod. Phys. Lett. A, 33, 1850185 (2018). https://doi.org/10.1142/S0217732318501857

H. Karayer, D. Demirhan, and F. Büyükilic, J. Math. Phys. 59, 053501 (2008). https://doi.org/10.1063/1.5022008

M.D. Katanaev, and I.V. Volovich, "Theory of defects in solids and three-dimensional gravity", Annals of Physics, 216(1), 1 1992. https://doi.org/10.1016/0003-4916(52)90040-7

C. Furtado, and F. Moraes, Phys. Lett. A, 188(4-6), 394 (1994). https://doi.org/10.1016/0375-9601(94)90482-0

C.R. Muniz, V.B. Bezerra and M.S. Cunha, Ann. Phys. 350, 105 (2014). https://doi.org/10.1016/j.aop.2014.07.017

V.F. Mukanov, H.A. Feldman, and R.H. Brandenberger, Physical Report 215, 203 (1992). https://doi.org/10.1016/0370-1573(92)90044-Z

J.L. Domenech-Garret, and M.A. Sanchis-Lozano, Physics Letters B, 669(1), 52 (2008). https://doi.org/10.1016/j.physletb.2008.09.021

Y. Cançelik, and B. Gönül, Mod. Phys. Lett. A, 29, 1450170 (2014). https://doi.org/10.1142/S0217732314501703

M. Modarres, and A. Mohamadnejad, Phys. Part. Nucl. Lett. 10, 99 (2013). https://doi.org/10.1134/S1547477113020106

M. Modarres, and H. Gholizade, Int. J. Mod. Phys. E, 17, 1335 (2008). https://doi.org/10.1142/S0218301308010453

A.N. Ikot, B.C. Lutfuoglu, M.I. Ngweke, M.E. Udoh, S. Zare, and H. Hassanabadi, Eur. Phys. J. Plus, 131, 419 (2016). https://doi.org/10.1140/epjp/i2016-16419-5

W.A. Yahua, and K.J. Oyewumi, J. Asso. Arab. Univ. Bas. App. Scie, 21, 53 (2016). https://doi.org/10.1016/j.jaubas.2015.04.001

H. Hassanabadi, and M. Hosseinpoura, Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

Citations

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations
Nga Ongodo D., Atangana Likéné A., Zarma A., Ema’a Ema’a J. M., Ele Abiama P. & Ben-Bolie G. H. (2025) International Journal of Modern Physics E
Crossref

Properties and Behaviors of Heavy Quarkonia: Insights through Fractional Model and Topological Defects
Abu-shady M., Fath-Allah H. M. & Dong Shi Hai (2024) Advances in High Energy Physics
Crossref

Spin averaged mass spectra and decay constants of heavy quarkonia and heavy-light mesons using bi-confluent heun equation
Kanago U. V. Ndouvade, Likéné A. Atangana, Ema’a J. M. Ema’a, Abiama P. Ele & Ben-Bolie G. H. (2024) The European Physical Journal A
Crossref

Artificial neural network approach for mass spectra of (ηc(nS),ψ(nS)) states and X(3940), X(4160), Y(4260), ψ(4415), Y(4660) charmonium-like resonances
Atangana Likéné A., Nga Ongodo D., Ema’a Ema’a J. M., Ele Abiama P. & Ben-Bolie G. H. (2024) International Journal of Modern Physics A
Crossref

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass
Atangana Likéné A. A., Ungem L. B., Mbah D. C., Nga Ongodo D., Houzibe R. & Djeuyi Ndafeun F. B. (2025) Modern Physics Letters A
Crossref

Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt
Ahmadou K., Likéné A. Atangana, Mbembe S. Mbida, Ema’a J. M. Ema’a, Abiama P. Ele & Ben-Bolie G. H. (2025) International Journal of Modern Physics E
Crossref

Angular momentum dependence of nuclear decay of radon isotopes by emission of $$^{14}$$C nuclei and branching ratio relative to $$\alpha $$-decay
Atangana Likéné A. A., Ndjana Nkoulou J. E. & Saïdou (2025) The European Physical Journal Plus
Crossref

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times
Ongodo D. Nga, Likéné A. A. Atangana, Ema’a J. M. Ema’a, Abiama P. Ele & Ben-Bolie G. H. (2025) The European Physical Journal C
Crossref

Hyperfine mass splittings in ground and radially excited states of heavy-flavored QQQ¯Q¯ tetraquarks: PGM defect and fractional order effects
Nga Ongodo D., Atangana Likéné A.A., Ema'a Ema'a J.M., Ele Abiama P. & Ben-Bolie G.H. (2025) Nuclear Physics A
Crossref

Quark confinement in Schwarzchild-like space–time with a metric generated by a nongravitational Yukawa-like strong field
Likéné A. Atangana, Ema’a Ema’a J. M., Ele Abiama P. & Ben-Bolie G. H. (2023) International Journal of Modern Physics A
Crossref

Published
2022-09-02
Cited
How to Cite
Likéné, A., Zarma, A., Ongodo, D., Ema’a Ema’a, J. M., Abiama, P., & Ben-Bolie, G. (2022). Effects of Gravitational Field of a Topological Defect on Statistical Properties of Heavy Quark-Antiquark Systems. East European Journal of Physics, (3), 129-141. https://doi.org/10.26565/2312-4334-2022-3-17