Study of CIGS Pseudo-Homojunction Thin Film Solar Cell using SCAPS-1D

  • Samah Boudour Research Center in Industrial Technologies CRTI, Algiers, Algeria https://orcid.org/0000-0002-4277-6945
  • Idris Bouchama Electronic Department, Faculty of Technology, University of M'sila, Alegria; Research Unite on Emerging Materials (RUEM), University Ferhat Abbas, Setif, Algeria
  • Samiha Laidoudi Université Mohamed El Bachir El Ibrahimi de Bordj Bou Arréridj El-Anasser, Algérie https://orcid.org/0000-0002-3566-9359
  • Walid Bedjaoui Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria; Department of Mechanical Engineering, University of Biskra, Biskra, Algeria
  • Leila Lamiri Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • Ouafia Belgherbi Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • Siham Aziez Centre de Recherche Scientifique et Technique en analyse physico-chimique CRAPC, Tipaza, Algerie
Keywords: CIGS, ODC, Pseudo-homojunction, J-V characteristics, Scaps-1D

Abstract

The present modelling study reports the performance of defected CIGS pseudo-homojunction thin film solar cell (P-HTFSC) and determines its optimum parameters for high performance using the Scaps-1D software under the AM1.5 illumination and the operating temperature of 300 K. To focus the discussion on the optimal parameters (thickness, doping concentrations, deep/interface defect concentrations and bandgap) for the ZnO, CdS, ODC and CIGS thin film layers, cross sectional (1D) simulations have been performed on the ZnO/CdS/ODC/CIGS P-HTFSC device for obtaining its optimal structure that confers high light-into-electricity conversion efficiency. The four light J-V characteristics (short-circuit current: JSC, open-circuit voltage: VOC, fill factor: FF and conversion efficiency: ) have been used as indicators to evaluate the device performances. Simulation outcomes have proved that for a best performance for CIGS P-HTFSC device, the optimal thickness for CIGS and ODC layers should be small than 2 µm and few nm, respectively, while the optimal defect concentration within the layer should be 1013 cm-3 and between 1013 cm-3-1018 cm-3, respectively.

Downloads

Download data is not yet available.

References

S.R. Kodigala, Chapter 5 - Optical Properties of I–III–VI2 Compounds, Thin Films and Nanostructures, 35, 195 (2010). https://doi.org/10.1016/B978-0-12-373697-0.00005-5

N. Khoshsirat, and N.A.M. Yunus, in: Nanoelectronics and Materials Development, edited by K. Abhijit, (InTechOpen, 2016), pp. 41-65.

M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X.J. Hao, “Solar cell efficiency tables (Version 59)”, Prog. Photovolt. Res. Appl. 30, 3 (2022). http://dx.doi.org/10.1002/pip.3506

L.A. Kosyachenko, in: Solar Cells: New Approaches and Reviews, edited by J. Fagerberg, D.C. Mowery, and R.R. Nelson, (IntechOpen, 2015). https://doi.org/10.5772/58490

I. Bouchama, S. Boudour, N. Bouarissa, and Z. Rouabah, “Quantum and conversion efficiencies optimization of superstrate CIGS thin-films solar cells using In2Se3 buffer layer”, Optical Materials, 72, 177 (2017). http://dx.doi.org/10.1016/j.optmat.2017.05.056

A. Bakoura, A. Saadoune, I. Bouchama, F. Dhiabi, S. Boudour, and M.A. Saeede, “Effect and optimization of ZnO layer on the performance of GaInP/GaAs tandem solar cell”, Micro and Nanostructures, 168, 207294 (2022). https://doi.org/10.1016/j.micrna.2022.207294

M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS manual, Version 2021, (University of Gent, Belgium).

Y. Osman, M. Fedawy, M. Abaza, M.H. Aly, “Optimized CIGS based solar cell towardsan efficient solar cell: impact of layers thickness and doping”, Optical and Quantum Electronics, 53, 245 (2021). https://doi.org/10.1007/s11082-021-02873-4

J.W. Lee, J.D. Cohen, and W.N. Shafarman, “The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements”, Thin Solid Films, 480, 336 (2005). https://doi.org/10.1016/j.tsf.2004.11.087

Ö.F. Yüksel, B.M. Başol, H. Şafak, and H. Karabiyik, “Optical characterisation of CuInSe2 thin films prepared by two-stage process”, Appl. Phys. A, 73, 387 (2001). https://doi.org/10.1007/s003390100744

J.R. Lakowicz, I. Gryczynski, Z. Gryczynski, and C.J. Murphy, “Luminescence Spectral Properties of CdS Nanoparticles”, J. Phys. Chem. B. 103(36), 7613 (1999). https://doi.org/10.1021/jp991469n

S. Emin, S. P. Singh, L. Han, N. Satoh, and A. Islam, “Colloidal quantum dot solar cells”, Sol. Energy, 85, 1264 (2011). https://doi.org/10.1016/j.solener.2011.02.005

Published
2022-12-06
Cited
How to Cite
Boudour, S., Bouchama, I., Laidoudi, S., Bedjaoui, W., Lamiri, L., Belgherbi, O., & Aziez, S. (2022). Study of CIGS Pseudo-Homojunction Thin Film Solar Cell using SCAPS-1D. East European Journal of Physics, (4), 145-152. https://doi.org/10.26565/2312-4334-2022-4-14