Resolution of the Ultrasound Doppler System Using Coherent Plane-Wave Compounding Technique
Abstract
In this work, in the process of plane-wave ultrasound probing from different angles the attainable spatial resolution was estimated on the basis of the previously developed theory of the Doppler response formation. In the theoretical calculations coherent compounding of the Doppler response signals was conducted over the period of changing the steering angles of probing. For this case an analytical expression for the ultrasound system sensitivity function over the field, which corresponds to the point spread function, is obtained. In the case of a rectangular weighting window for the response signals, the resolution is determined by the well-known sinc-function. The magnitude of the lateral resolution is inversely proportional to the range of the steering angles. It is shown that the theoretically estimated magnitude of the Doppler system lateral resolution, when using the technique of coherent plane-wave compounding, is in good agreement with the experimental data presented in literature.
Downloads
References
.Y. Lu, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 44(4), 839 (1997), https://doi.org/10.1109/58.655200
M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, IEEE Trans. Ultrason. Ferroelectr.Freq. Contr.49(10), 1363 (2002), https://doi.org/10.1109/TUFFC.2002.1041078
G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, IEEE Trans. Ultrason.Ferroelectr.Freq.Contr. 56(3), 489 (2009), https://doi.org/10.1109/TUFFC.2009.1067
J.A. Jensen, S.I. Nikolov, K.L. Gammelmarkand, and M.H. Pedersen, Ultrasonics, 44(1), e5 (2006), https://doi.org/10.1016/j.ultras.2006.07.017
J.-l. Gennisson et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1059 (2015), https://doi.org/10.1109/TUFFC.2014.006936
M. A. Lediju, G. E. Trahey, B. C. Byram and J. J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(7), 1377 (2011), http://doi.org/10.1109/TUFFC.2011.1957
Y.L. Li, J.J. Dahl, J. Acoust. Soc. Am. 141(3), 1582 (2017), https://doi.org/10.1121/1.4976960
J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(1), 134 (2011), https://doi.org/10.1109/TUFFC.2011.1780
J. A. Jensen and N. Oddershede, IEEE Trans. Med. Imag. 25(12), 1637-1644(2006), https://doi.org/10.1109/TMI.2006.883087
Y.L. Li, J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1022 (2015), https://doi.org/10.1109/TUFFC.2014.006793
[11] J. Provost, C. Papadacci, C. Demene, J. Gennisson, M. Tanter and M. Pernot, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(8), 1467 (2015), https://doi.org/10.1109/TUFFC.2015.007032
J. Bercoff , M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 51(4), 396 (2004), https://doi.org/10.1109/TUFFC.2004.1295425
C. Papadacci, M. Pernot, M. Couade, M. Fink and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 288 (2014), http://doi.org/10.1109/TUFFC.2014.6722614
J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen and M. B. Nielsen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 55(8), 1729 (2008), https://doi.org/10.1109/TUFFC.2008.858
J. Jensen, M. B. Stuart, and J. A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1922 (2016), https://doi.org/10.1109/TUFFC.2016.2591980
B. Osmanski, M. Pernot, G. Montaldo, A. Bel, E. Messas and M. Tanter, IEEE Trans. Med. Imag., 31(8), 1661 (2012), http://doi.org/10.1109/TMI.2012.2203316
M. Tanter and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(1), 102 (2014), https://doi.org/10.1109/TUFFC.2014.6689779
S. I. Nikolov, B. G. Tomov and J. A. Jensen, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 1548-1552, https://doi.org/10.1109/ACSSC.2006.355018
R. Moshavegh, J. Jensen, C. A. Villagómez-Hoyos, M. B. Stuart, M. C. Hemmsen and J. A. Jensen, in Proceedings of SPIE Medical Imaging (San Diego, California, United States, 2016) pp. 97900Z-97900Z-9, https://doi.org/10.1117/12.2216506
J. Kortbek, J. A. Jensen and K. L. Gammelmark, Ultrasonics, 53(1), 1 (2013), https://doi.org/10.1016/j.ultras.2012.06.006
J. Cheng and J.Y. Lu, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 53(5), 880 (2006), https://doi.org/10.1109/TUFFC.2006.1632680
N. Oddershedeand J. A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 54(9), 1811 (2007), https://doi.org/10.1109/TUFFC.2007.465
B. Denarie et al., IEEE Trans. Med. Imaging 32(7), 1265 (2013), https://doi.org/10.1109/TMI.2013.2255310
Y. Tasinkevych, I. Trots, A. Nowicki, P.A. Lewin, Ultrasonics 52(2), 333 (2012), https://doi.org/10.1016/j.ultras.2011.09.003
S. Ricci, L. Bassi and P. Tortoli, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 314 (2014), https://doi.org/10.1109/TUFFC.2014.6722616
Y. L, Li, D. Hyun, L. Abou-Elkacem, J. K. Willmann, J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1878 (2016), https://doi.org/10.1109/TUFFC.2016.2616112
I. K. Ekroll, A. Swillens, P. Segers, T. Dahl, H. Torp and L. Lovstakken, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 60(4), 727 (2013) https://doi.org/10.1109/TUFFC.2013.2621
D. Hyun, J.J. Dahl, J. Acoust. Soc. Am. 147(3), 1323 (2020), https://doi.org/10.1121/10.0000809
I.K. Ekroll, M.M. Voormolen, O.K.-V. Standal, J.M. Rau and L. Lovstakken, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(9), 1634 (2015), https://doi.org/10.1109/TUFFC.2015.007010
Y. Wang, C. Zheng, H. Peng and C. Zhang, IEEE Access 6, 36927 (2018), https://doi.org/10.1109/ACCESS.2018.2852641
S. Salles, F. Varray, Y. Bénane and O. Basset, 2016 IEEE International Ultrasonics Symposium (IUS), 2016, pp. 1-4, https://doi.org/10.1109/ULTSYM.2016.7728751
C. Zheng, Q. Zha, L. Zhang and H. Peng, IEEE Access 6, 495 (2018), https://doi.org/10.1109/ACCESS.2017.2768387
Y.M. Benane et al., 2017 IEEE International Ultrasonics Symposium (IUS), 2017, pp. 1-4, https://doi.org/10.1109/ULTSYM.2017.8091880
X. Yan, Y. Qi, Y. Wang, Y. Wang, Sensors 21, 394 (2021), https://doi.org/10.3390/s21020394
C. Golfetto, I. K. Ekroll, H. Torp, L. Løvstakken and J. Avdal, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 68(4), 1105 (2021), https://doi.org/10.1109/TUFFC.2020.3033719
S. Salles, H. Liebgott, O. Basset, C. Cachard, D. Vray and R. Lavarello, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(11), 1824 (2014), https://doi.org/10.1109/TUFFC.2014.006543
C.-C. Shen, Y.-C. Chu, Sensors 21, 4856 (2021), https://doi.org/10.3390/s21144856
E.A. Barannik, Ultrasonics 39(2), 311 (2001), https://doi.org/10.1016/S0041-624X(01)00059-2
I.V. Skresanova and E.A. Barannik, Ultrasonics 52(5), 676 (2012), https://doi.org/10.1016/j.ultras.2012.01.014
I.V. Sheina, O.B. Kiselov and E.A. Barannik, East Eur. J. Phys. 4, 5 (2020), https://doi.org/10.26565/2312-4334-2020-4-01
[41] P. J. Fish, in: Physical Principles of Medical Ultrasonics, editedby C.R. Hill (EllisHorwood, Chichester, 1986), pp. 338 376.
R.J. Dickinson, D.K. Nassiri, in: Physical principles of medical ultrasonics, edited by C. R. Hill, J. C. Bamber, G. R. terHaar (John Wiley & Sons, West Sussex, 2004), pp. 191–222.
E.A. Barannik and O.S. Matchenko, East Eur. J. Phys. 3(2) 61 (2016), https://doi.org/10.26565/2312-4334-2016-2-08. (in Russian)
W. Gilson andS. Orphanoudakis, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, NewOrleans, 1988), pp. 473-474, https://doi.org/10.1109/IEMBS.1988.94615
O.S. Matchenko and E.A. Barannik, Acoust. Phys. 63(5), 596 (2017), https://doi.org/10.1134/S106377101705008
R.S. Apte, D.S. Chen, N. Ferrara, Cell, 176(6), 1248-1264 (2019), https://doi.org/10.1016/j.cell.2019.01.021
J. Gallo, M. Raska, E. Kriegova, S. B. Goodman, Journal of Orthop. Translat., 10, 52 (2017), https://doi.org/10.1016/j.jot.2017.05.007
M. Jakovljevic, B.C. Yoon, L. Abou-Elkacem, D. Hyun, Y. Li, E. Rubesova, J.J. Dahl, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(1), 92 (2021), https://doi.org/10.1109/TUFFC.2020.3010341
Y.L. Li, D. Hyun, I. Durot, J.K. Willmann and J.J. Dahl, 2018 IEEE International Ultrasonics Symposium (IUS), 2018, pp. 1-9, https://doi.org/10.1109/ULTSYM.2018.8579726
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).