Study of Electrostatic Ion-Cyclotron Waves in Magnetosphere of Uranus
Abstract
In this manuscript, the method of characteristics particle trajectories details used and the dispersion relation for the ionosphere of Uranus were being used to investigate electrostatic ion-cyclotron waves with parallel flow velocity shear in the presence of perpendicular inhomogeneous DC electric field and density gradient. The growth rate has been calculated using the dispersion relation. Electric fields parallel to the magnetic field transmit energy, mass, and momentum in the auroral regions of the planetary magnetosphere by accelerating charged particles to extremely high energies. The rate of heating of plasma species along and perpendicular to the magnetic field is also said to be influenced by the occurrence of ion cyclotron waves and a parallel electric field in the acceleration area.
Downloads
References
D.S. Lemons D. Winske, and S.P. Gary, J. Geophys. Res. 97, 19381 (1992). https://doi.org/10.1029/92JA01735
W.S. Kurth, D.D. Barbosa, D.A. Gurnett, and F.L. Scarf, J. Geophys. Res. 92(A13), 15225 (1987). https://doi.org/10.1029/ja092ia13p15225
P. Zarka, Advances in Sp. Res. 33, 2045 (2004). https://doi.org/10.1016/j.asr.2003.07.05
G. Ganguli, and Y.C. Lee, Phys. Fluids, 28, 761 (1985). https://doi.org/10.1063/1.865096
G. Ganguli, Y.C. Lee, and P.J. Palmadesso, Phys. Fluids, 31, 823 (1988). https://doi.org/10.1063/1.866818
K.I. Nishikawa, G. Ganguli, Y.C. Lee, and P.J. Palmadesso, Phys. Fluids, 31, 1568 (1988). https://doi.org/10.1063/1.866696
G. Ganguli , Bakshi P. and Palmadesso P., J. Geophys. Res. 89, 945 (1984). https://doi.org/10.1029/JA089iA02p00945
R Misra. and Tiwari M.S., Planetary and Space Sci. 54 (2), 188 (2006). https://doi.org/10.1016/j.pss.2005.11.003
G. Ahirwar, P. Varma and M.S.Tiwari, Annales Geophysicae, 24(7), 1919 (2006). https://doi.org/10.5194/angeo-24-1919-2006
P. Kandpal, R. Kaur, and R.S. Pandey, Advances in Space research, 61, 581 (2018). https://doi.org/10.1016/j.asr.2017.09.033
P. Kandpal, and R.S. Pandey, Astrophysics and Space Sciences, 363, 227 (2018). https://doi.org/10.1007/s10509-018-3442-7
R.K. Tyagi, K.K. Srivastava, and R.S. Pandey, Surface Engineering and Applied Electrochemistry, 47(4), 370 (2011). https://doi.org/10.3103/S1068375511040144
A.R. Niknam, E. Rastbood, and S.M. Khorashadizadeh, Phys. Plasmas, 22, 122102 (2015). https://doi.org/10.1063/1.4936825
M. Barati Moqadam Niyat, S.M.Khorashadizadeh and A.R. Niknam, Physics of Plasmas, 23, 122110 (2016). https://doi.org/10.1063/1.4971810
M.F. Bashir, R. Ilie, and G.Murtaza, Physics of Plasmas, 25, 052114 (2018). https://doi.org/10.1063/1.5025843
M. Sharifi, and A. Parvazian, Physica A, 393, 489 (2014). https://doi.org/10.1016/j.physa.2013.09.024
J. Sharma, S.C. Sharma, and D. Kaur Progress In Electromagnetics Research Letters, 54, 123 (2015). https://doi.org/10.2528/PIERL15042703
Y. Liu, Y.F. Wang, and T.P. Hu, Phys. Plasmas, 23, 042103 (2016). https://doi.org/10.1063/1.4945635
K.-Y. Yi, Z.A. Wei, J.X. Ma, Q. Liu, and Z.Y. Li, Physics of Plasmas, 27, 082103 (2020). https://doi.org/10.1063/1.5144453
I. Sereda, Ya. Hrechko, Ie. Babenko, East Eur. J. Phys. 3, 81 (2021). https://doi.org/10.26565/2312-4334-2021-3-12
V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov, East Eur. J. Phys. 4, 152 (2021). https://doi.org/10.26565/2312-4334-2021-4-20
M. Kono, J. Vranjes, and N. Batool, Phys. Rev. Lett. 112, 105001 (2014). https://doi.org/10.1103/PhysRevLett.112.105001
M.F. Bashir, N. Noreen, G. Murtaza, and P.H. Yoon, Plasma Phys. Controlled Fusion, 56, 055009 (2014). https://doi.org/10.1088/0741-3335/56/5/055009
M.F. Bashir, and J. Vranjes, Phys. Rev. E, 91, 033113 (2015). https://doi.org/10.1103/PhysRevE.91.033113
S.M. Khorashadizadeh, M. Barati M. Niyat, and A.R. Niknam, Phys. Plasmas, 23, 062102 (2016). https://doi.org/10.1063/1.4953094
S.M. Khorashadizadeh, E. Rastbood, and A.R. Niknam, Phys. Plasmas, 22, 072103 (2015). https://doi.org/10.1063/1.4926521
M.S. dos Santos, L.F. Ziebell, and R. Gaelzer, Phys. Plasmas, 22, 122107 (2015). https://doi.org/10.1063/1.4936972
P. Verma, and M.S. Tiwari, Physica Scripta, 44, 296 (1991). https://doi.org/10.1088/0031-8949/44/3/010
J.D. Huba, J. Geophys. Res. 86, 3653 (1981). https://doi.org/10.1029/JA086iA05p03653
R.S. Pandey , Progress in Electromagnetics Research B, 11, 39 (2009). https://www.jpier.org/PIERB/pierb11/04.08073101
Eliasson, P.K. Shukla, and J.O. Hall, 13, 024502 (2006). https://doi.org/10.1063/1.2173934.
E.N. Opp, and A.B. Hassam, Phys. of Fluids B, 3, 885 (1991). https://doi.org/10.1063/1.859845
M. Fujimoto, and T. Terasawa, J. Geophys. Res. 100, 12025 (1995). https://doi.org/10.1029/94JA02219
N.F. Ness, et al. Science, 233, 4759 (1986). https://doi.org/10.1126/science.233.4759.85
S. Stanley, and J. Bloxham, Nature, 428, 151 (2004). https://doi.org/10.1038/nature02376
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).