The Impact of Pulse Plasma Treatment on the Operating Characteristics of Steel 40X10C2M: Experiment and Numerical Simulations

Keywords: plasma treatment, modified layer, microhardness, microstructure, thermal conductivity equation, melting and solidification, melt cooling rate

Abstract

This paper presents a study of operating characteristics of steel 40X10C2M after treatment it of high-energy plasma pulses. The steel is used to manufacture the elements of ships' power plants. For pulsed plasma treatment of steel samples, we used an electrothermal plasma accelerator (ETPA). A high-current pulsed high-pressure arc discharge was initiated in a restricted dielectric chamber of ETPA. The discharge duration was 1.4 ms, the maximum current reached the value of 5 kA, the discharge voltage was up to 5 kV. We investigated the microhardness and microstructure of the processed (modified) layer and determined the optimal parameters of steel processing that provide the best characteristics of the modified layer when the microhardness increases by ≈ 5 times. Microhardness maxima were discovered in the depth of the modified layer. The paper studies the possibilities of controlling the maxima localization to form the desired performance characteristics of the treated layer. Mathematical modeling of rapid pulsed heating of the steel surface layer is performed within the framework of the two-phase "melt-solid" model, taking into account the dynamics of the thermodynamic characteristics of steel. For this purpose, we used the classical equation of thermal conductivity with varying steel parameters: density, heat capacity, and coefficient of thermal conductivity during the transition of a substance from the liquid to the solid phase. Within the chosen mathematical model, numerical calculations of the rapidly pulsed heating phenomenon of the steel surface were performed, taking into account melting and solidification in the Comsol Multiphysics package using the finite element method. The numerical simulation results are in good agreement with the experimental distribution of the microhardness of the treated steel layer deep into the sample.

Downloads

Download data is not yet available.

References

Y. Zhao, B. Gao, G.F. To, S.W. Li, S.Z Zhao, and C. Dong, Applied Surface Science. 257, 3913 (2011), https://doi.org/10.1016/j.apsusc.2010.11.118

A.D. Pogrebnjak, and Y.N. Tyurin, Physics-Uspekhi. 48(5), 487 (2005), http://dx.doi.org/10.1070/PU2005v048n05ABEH002055

A.D. Korotaev, Surface and Coatings Technology. 185 (1), 38-49 (2004), https://doi.org/10.1016/j.surfcoat.2003.11.021

A.A. Skvortsov, S.G. Kalenkov, and M.V. Koryachko, Письма в ЖТФ [Letters in ZhTF], 40(18), 24 (2014). (in Russian)

E.V. Haranzhevskiy, D.A. Danilov, M.D. Krivilyov, and P.K. Galenko, Mater. Sci. Eng. A. 375, 502 (2004), https://doi.org/10.1016/j.msea.2003.10.040

A.G.M. Pukasiewicz, Jr.P.R. C. Alcover, A.R. Capra, and R.S.C. Pаredes, Journal of Thermal Spray Technology, 23(1-2), 51 (2014), https://doi.org/10.1007/s11666-013-0001-1

Y.D. Shitsyn, D.S. Belinin, S.D. Neulybin, and P.S. Kuchev, Modern Applied Science. 9(6), 64-75 (2015), https://doi.org/10.5539/mas.v9n6p64.

E.S. Vaschuk, E.A. Budovsky, S.V. Raykov, and V.E. Gromov, Фундаментальные проблемы современного материаловедения [Fundamental problems of modern Materials Science]. 10(1), 68-71 (2013). (in Russian)

D. Karthik, S. Kalainathan, and S. Swaroop, Surface and Coatings Technology, 278, 138 (2015), DOI:10.1016/j.surfcoat.2015.08.012

E.A. Ochoa, D. Wisniveski, T. Minea, M. Ganciu, C. Tauziede, P. Chapon, and F. Alvarez, Surface and Coatings Technology, 203(10-11), 1457 (2009), https://doi.org/10.1016/j.surfcoat.2008.11.025

V.D. Sarychev, S.V. Konovalov and B.B. Haimzon, Известия вузов. Чёрная металлургия [News of universities. Ferrous metallurgy]. 8, 52 (2011). (in Russian)

S. Alavi, M. Passandideh-Fard, and J. Mostaghimi. Journal of Thermal Spray Technology. 21, 248 (2012), https://doi.org/10.1007/s11666-012-9804-8.

D.N. Trushnikov, D.S. Belinin, and Yu.D. Schitsyin, Современные проблемы науки и образования [Modern problems of science and education]. 2, 95 (2014). (in Russian), http://www.science-education.ru/ru/article/view?id=12706

H. Qu, Ch. Wang, X. Guo, and A. Mandelis. Journal of Applied Physics. 104(11), 113518 (2008), https://doi.org/10.1063/1.3035831.

V.S. Verkhoribov, Yu.S. Korobov, S.V. Nevezhin, Yu.D. Shutsyn, and I.A. Gilev, Master's Journal. 1, 81 (2015). (in Russian)

W. Piekarska, and M. Kubiak. Applied Mathematical Modelling, 37(4), 2051 (2013), https://doi.org/10.1016/j.apm.2012.04.052

F.Kh. Mirzade, V.G. Niziev, V.Ya. Panchenko, M.D.Khomenko, R.V.Grishaevm, S.Pityana, and Corney van Rooyen, Physica B: Condensed Matter, 423, 69 (2013), https://doi.org/10.1016/j.physb.2013.04.053

Yu.E. Kolyada, A.A. Bizyukov, O.N. Bulanchuk, and V.I. Fedun, PAST, Series: Plasma Electronics and New Methods of Acceleration, 4(98), 319 (2015), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_4/article_2015_4_319.pdf

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, International Journal of Heat and Mass Transfer. 16, 1825 (1973), https://doi.org/10.1016/0017-9310(73)90202-0

A. I. Volkov, and I. M. Zharvsky, Большой химический справочник [Big chemical reference book], (Soviet School, Moscow, 2005), pp.608. (in Russian)

N.A. Savinkov, and Yu.E. Kolyada, Вісник Приазовського державного технічного університету: Збірник наукових праць [Bulletin of the Priazovsky State Technical University: Collection of scientific works], 29, 70 (2014). (in Russian).

I.K. Razumov, Yu.N. Gornyostrev, and M.I. Katsnelson, Физика металлов и металловедение [Metal physics and metal studies], 118(4), 380 (2017). (in Russian)

Published
2021-09-28
Cited
How to Cite
Savinkov, N. A., Bulanchuk, O. M., & Bizyukov, A. A. (2021). The Impact of Pulse Plasma Treatment on the Operating Characteristics of Steel 40X10C2M: Experiment and Numerical Simulations. East European Journal of Physics, (3), 102-109. https://doi.org/10.26565/2312-4334-2021-3-16

Most read articles by the same author(s)