A Review on Processing Routes, Properties, Applications, and Challenges of Titanium Metal Matrix Composite

  • Hrudayanjali Pathi PG Research Scholar, Department of physics, School of Sciences, GIET University, Gunupur, Odisha, India https://orcid.org/0000-0001-9361-7015
  • Tapan Kumar Mishri PG Research Scholar, Department of physics, School of Sciences, GIET University, Gunupur, Odisha, India https://orcid.org/0000-0003-1017-3119
  • Sasmita Rani Panigrahi PG Research Scholar, Department of physics, School of Sciences, GIET University, Gunupur, Odisha, India https://orcid.org/0000-0003-2623-0552
  • Bijayalaxmi Kuanar Department of physics, School of Sciences, GIET University, Gunupur, Odisha, India https://orcid.org/0000-0003-3187-9049
  • Biswajit Dalai PG Research Scholar, Department of physics, School of Sciences, GIET University, Gunupur, Odisha, India https://orcid.org/0000-0001-8401-7501
Keywords: Ti MMC, PM, AM, SPS, Challenges

Abstract

Titanium is currently familiar for its light weight, high strength, and non-reactive nature over all the metals. Titanium metal matrix composites (TMCs) are very popular in the field of aerospace, automotive, defense, and biomedical because of their high specific strength, light weight, and biocompatibility nature. Some of the extensively used fabrication methods like powder metallurgy (PM), additive manufacturing (AM), and spark plasma sintering (SPS) have been reviewed here with some of the properties of TMCs. By varying various types of reinforcements, it is possible to achieve the required properties as per industrial and modern applications in TMC. This study also includes the consequence of sintering temperature on properties of TMCs like physical, mechanical, and structural. Titanium alloys are showing good mechanical and biomedical properties when reinforced with carbon fibers, borides, ceramics, and plenty of other materials as continuous fiber or discontinuous particulates and whiskers. In this paper, the applications of TMCs in aerospace, automobile, biomedical, and defense have been narrated. Besides all these favorable properties and applications, TMCs can’t be used extensively in the said applications because of their high cost and difficulty in machining, that discussed in this paper over various challenges of TMCs. The cost reduction can be done by making Ti - super alloys. In addition, there is a necessity for an effective cooling system during the machining of TMCs to enhance machinability and some of the effective methods which may enhance the machinability of TMCs were also discussed.

Downloads

Download data is not yet available.

References

H. Attar, S.E. Haghighi, D. Kent, and M.S. Dargusch, Int. J. Machine Tools and Manufact. 133, 85-102 (2018), https://doi.org/10.1016/j.ijmachtools.2018.06.003

M.D. Hayat, H. Singh, Z. He, and P. Cao, Composites Part A: Applied Science and Manufacturing, 121, 418-438 (2019), https://doi.org/10.1016/j.compositesa.2019.04.005

B. Gareb, C.C. Roossien, N.B.V. Bakelen, G.J. Verkerke, A. Vissink, R.R. Bos, and B.V. Minnen, Scientific reports, 10, 1 (2020), https://doi.org/10.1038/s41598-020-75299-9

M. Haghshenas, Reference Modul Mater. Sci. Mater. Eng., 1–28, (2016), https://doi.org/10.1016/B978-0-12-803581-8.03950-3

K.M. Rahman, V.A. Vorontsov, S.M. Flitcroft, and D. Dye, Adv Eng Mater, 19, 1700027 (2017), https://doi.org/10.1002/adem.201700027

S.A. Singerman, and J.J. Jackson, in: Superalloys 1996: Proceedings of the Eigth International Symposium on Superalloys (Warrendale, TMS, 1996), pp. 579-586, https://www.tms.org/superalloys/10.7449/1996/superalloys_1996_579_586.pdf

J. Lee, H. Lee, K.H. Cheon, C. Park, T.S. Jang, H.E. Kim, and H.D. Jung, Additive Manufacturing, 30, 100883 (2019), https://doi.org/10.1016/j.addma.2019.100883

L.C. Zhang, and H. Attar, Advanced engineering materials, 18, 463-475, (2015), https://doi.org/10.1002/adem.201500419

S. Jayalxmi, R.A. Singh, and M. Gupta, Indian journal of advances in chemical science, S1, 283-288 (2016), https://www.ijacskros.com/artcles/IJACS-2S-59.pdf

M.S. Abd-Elwahed, A.F. Ibrahim, and M.M. Reda, Journal of Mterials Research and Technology, 9, 8528-8535 (2020), https://doi.org/10.1016/j.jmrt.2020.05.021

Jiao Y., Huang L., Geng L., Journals of alloys and compounds, 767, 1196-1215 (2018), https://doi.org/10.1016/j.jallcom.2018.07.100

V. Amigó, M.D. Salvador, and A.V.F. Romero, Materials science forum, 534, 817-820 (2007), https://doi.org/10.4028/www.scientific.net/MSF.534-536.817

V. Amigo, E. Klyastskina, V. Bonache, J. Candel, and F. Romero, Congress et Exhibition , 237 (2005).

S.C. Tjong, and Y.W. Mai, Composites Science and Technology, 68, 583-601 (2008), https://doi.org/10.1016/j.compscitech.2007.07.016

Shudong Luo, Tingting Song, Bing Liu, Jie Tian, and Ma Qian, Advanced Engineering Materials, 21(7), 1801331 (2019), https://doi.org/10.1002/adem.201801331

S. Ehtemam-Haghighi, G. Cao, and L.C. Zhang, Journal of Alloys and Compounds, 692, 892-897 (2017), https://doi.org/10.1016/j.jallcom.2016.09.123

S Wang, LJ Huang, L Geng, F Scarpa, Y Jiao, HX Peng, Scientific reports, 7(1), 1-13 (2017), https://doi.org/10.1038/srep40823

T.M.T. Godfrey, P.S. Goodwin, and C.M.W. Close, Advanced Engineering Materials, 2(3), 85-91 (2000) https://doi.org/10.1002/(SICI)1527-2648(200003)2:3<85::AID-ADEM85>3.0.CO;2-U

T. Saito, H. Takamiya, and T. Furuta, Materials Science and Engineering: A, 243, 273-278 (1998), https://doi.org/10.1016/S0921-5093(97)00813-7

T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, and C.M.W. Close, Materials Science and Engineering: A, 282, 240-250 (2000), https://doi.org/10.1016/S0921-5093(99)00699-1

K.B. Panda, and K.S.R. Chandran, Adv Mater Processes, 160, 59 (2002).

A. Pasha, B.M. Rajaprakash, and A.C. Manjunath, Material Science Research India, 17, 201-206 (2020), http://dx.doi.org/10.13005/msri/170302

A. Fregeac, F. Ansart, S. Selezneff, and C. Estournès, Ceramics International, 45, 23740-23749 (2019), http://dx.doi.org/10.1016/j.ceramint.2019.08.090

S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Composites Part A: Applied Science and Manufacturing, 48, 57-66 (2013), https://doi.org/10.1016/j.compositesa.2012.12.005

J. Ruzic, M. Simić, N. Stoimenov, D. Božić, and, J. Stašić, Metallurgical and Materials Engineering, 27, (2021), https://doi.org/10.30544/629

E. Fereiduni, A. Ghasemi, and, M. Elbestawi, Aerospace, 7, 77, (2020), https://doi.org/10.3390/aerospace7060077

F. Saba, E. Kabiri, J.V. Khaki, and M.H. Sabzevar, Powder Technology, 288, 76-86 (2016), https://doi.org/10.1016/j.powtec.2015.10.030

A. Aytimur, S. Koçyiğit, and I. Uslu, Journal of Inorganic and Organometallic Polymers and Materials, 24, 927-932 (2014), https://doi.org/10.1007/s10904-014-0064-6

L. Bolzoni, E.M.R. Navas, and, E. Gordo, Materials Science and Engineering: A, 687, 47-53 (2017), https://doi.org/10.1016/j.msea.2017.01.049

M.F.S.H. Zawrah, I.M.H. Allah, M.H. Ata, and H. Shouib, Materials Research Express, 6, (2019), https://doi.org/10.1088/2053-1591/ab316e

C. Suryanarayana, and A. Al-Joubori, in: Encyclopedia of Iron, Steel, and Their Alloys, (eBook Published, Boca Raton, 2016), pp. 159-177, https://doi.org/10.1081/E-EISA-120053049.

H.A. Hegab, Manufacturing Review, 3, 11 (2016), https://doi.org/10.1051/mfreview/2016010

J. P. Kruth, M. C. Leu, and T. Nakagawa, CIRP Ann. - Manuf. Technol., 47, 525 (1998), https://doi:org/10.1016/S0007-8506(07)63240-5

K.V. Wong, and A Hernandez, International Scholarly Research Network ISRN Mechanical Engineering. 2012, 1 (2012), https://doi.org/10.5402/2012/208760.

Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning, and H. Wang, Compos. Part B Eng., 133, 91-100 (2018), https://doi.org/10.1016/j.compositesb.2017.09.019

H. Attar et al., Mater. Sci. Eng. A, 625, 350-356 (2015), https://doi.org/10.1016/j.msea.2014.12.036

D. Gu, G. Meng, C. Li, W. Meiners, and R. Poprawe, Scr. Mater. 67, 185-188 (2012), https://doi.org/10.1016/j.scriptamat.2012.04.013

D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Compos. Sci. Technol., 71, 1612-1620 (2011), https://doi.org/10.1016/j.compscitech.2011.07.010

Y. Zhang, J. Sun, and R. Vilar, J. Mater. Process. Technol., 211, 597-601 (2011), https://doi.org/10.1016/j.jmatprotec.2010.11.009

M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay, Scr. Mater. 63, 438-441 (2010), https://doi.org/10.1016/j.scriptamat.2010.04.044

D. Gu, C. Hong, and G. Meng, Metall Mater Trans A, 43, 697-708 (2012), https://doi.org/10.1007/s11661-011-0876-8

S.L. Sing, F.E. Wiria, and W.Y. Yeong, Int. J. Refract. Met. Hard Mater. 77, 120-127 (2018), https://doi.org/10.1016/j.ijrmhm.2018.08.006

P.K. Farayibi, T.E. Abioye, A. Kennedy, and A.T. Clare, J. Manuf. Process. 45, 429-437 (2019), https://doi.org/10.1016/j.jmapro.2019.07.029

V.K. Balla, A. Bhat, S. Bose, and A. Bandyopadhyay, J. Mech. Behav. Biomed. Mater. 6, 9-20 (2012), https://doi.org/10.1016/j.jmbbm.2011.09.007

M. Das et al., J. Mech. Behav. Biomed. Mater. 29, 259-271 (2014), https://doi.org/10.1016/j.jmbbm.2013.09.006

B. Vrancken, L.Thijs, J.P. Kruth., and J. Van Acta Materialia, 68, 150-158 (2014). https://doi.org/10.1016/j.actamat.2014.01.018

Sairam, K., et al. International Journal of Refractory Metals and Hard Materials 42, 185-192, (2014). https://doi.org/10.1016/j.ijrmhm.2013.09.004

M. Suárez, A. Fernández, J.L. Menéndez, R.Torrecillas, H.U.Kessel, J.Hennicke, R.Kirchner, and T.Kessel, in: Sintering applications, edited by Burcu Ertuğ, (InTech, Croatia, 2013), pp. 319-342, https://doi.org/10.5772/53706

K. Yang, D. Hitchcock, J. He, and A.M. Rao, Tuning Electrical Properties of Carbon Nanotubes via Spark Plasma Sintering, Encyclopedia of Nanotechnology; (Springer, Berlin/Heidelberg, Germany, 2012), pp. 2780-2788, https://doi.org/10.1007/978-90-481-9751-4_169

N. Saheb et al., J. Nanomater, 2012, 983470-82 (2012), https://doi.org/10.1155/2012/983470

K. Vasanthakumar and S. R. Bakshi, Ceram. Int., 44, 484-494 (2018), https://doi.org/10.1016/j.ceramint.2017.09.202

A. Borrell, M. D. Salvador, V. García-Rocha, A. Fernández, E. Chicardi, and F. J. Gotor, Mater. Sci. Eng. A, 543, 173-179, (2012), https://doi.org/10.1016/j.msea.2012.02.071

Y.F. Yang, and M. Qian, in: Titanium powder metallurgy, Science, Technology and Applications, (Elsevier, 2015), pp. 219-235, https://doi.org/10.1016/B978-0-12-800054-0.00013-7

N. Gupta, and B. Basu, in: Intermetallic Matrix Composites, Properties and Applications, (Elsevier, 2018), pp. 243–302, https://doi.org/10.1016/B978-0-85709-346-2.00010-8

M. Zadra, and L. Girardini, Mater. Sci. Eng. A, 608, 155-163 (2014), https://doi.org/10.1016/j.msea.2014.04.066

T.E. O'Connell, Production of Titanium Aluminide Products, Report AFWAL-TR-83-4050, Wright-Patterson AFB OH, (1983).

J.J. Jackson, et al, Titanium Aluminide Composites, NASP Contractor Report 1112, NASP JPO, Wright-Patterson AFB OH, (1991).

M. Selva Kumar, P. Chandrasekar, P. Chandramohan, and M. Mohanraj, Mater. Charact. 73, 43-51, (2012), https://doi.org/10.1016/j.matchar.2012.07.014

X.J. Shen, C. Zhang, Y.G. Yang, and L. Liu, Addit. Manuf. 25, 499-510 (2019), https://doi.org/10.1016/j.addma.2018.12.006

K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1291-1297 (2012), https://doi.org/10.1016/j.compscitech.2012.05.002

Z. Yan, F. Chen, Y. Cai, and Y. Zheng, Powder Technol. 267, 309-314 (2014), https://doi.org/10.1016/j.powtec.2014.07.048

S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, Mater. Sci. Eng. A, 628, 75-83 (2015), https://doi.org/10.1016/j.msea.2015.01.033

F.C. Wang et al., Carbon N.Y., 95, 396-407, (2015), https://doi.org/10.1016/j.carbon.2015.08.061

M.A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, Mater. Sci. Eng. A, 655, 44-49 (2016), https://doi.org/10.1016/j.msea.2015.12.050

Y. Song et al., Mater. Des. 109, 256-263 (2016), https://doi.org/10.1016/j.matdes.2016.07.077

N.S. Karthiselva, and S.R. Bakshi, Mater. Sci. Eng. A, 663, 38-48 (2016), https://doi.org/10.1016/j.msea.2016.03.098

S. Li et al., Mater. Des. 95, 127-132 (2016), https://doi.org/10.1016/j.matdes.2016.01.092

S. Zherebtsov, M. Ozerov, M. Klimova, D. Moskovskikh, N. Stepanov, and G. Salishchev, Metals, 9, 1175 (2019), https://doi.org/10.3390/met9111175

P. Odetola, A. P. Popoola, E. Ajenifuja, and O. Popoola, J. Met. Mater. Miner. 30, 119-127 (2020),

P. Singh, H. Pungotra, and N.S. Kalsi, Materials Today: Proceedings, 4, 8971-8982 (2017), https://doi.org/10.1016/j.matpr.2017.07.249

C. Sandu, S. Vintilă, M. Sima, F. Zavodnic, T. Tipa, and C. Olariu, Int. J. Systems Appl. Eng. Dev. 12, 168 (2018).

H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, and M.S. Dargusch, J. Alloys Compd. 827, 154263 (2020), https://doi.org/10.1016/j.jallcom.2020.154263

T. Furuta, Titanium for Consumer Applications: Real-World Use of Titanium, (Elsevier, 2019), pp. 77-90, https://doi.org/10.1016/B978-0-12-815820-3.00006-X

O. Schauerte, Advanced Engineering Materials, 5, 411-418, (2003), https://doi.org/10.1002/adem.200310094

A.K. Sachdev, K.Kulkarni, Z.Z. Fang, R.Yang, and V. Girshov. JOM, 64, 553-565 (2012), http://doi.org/10.1007/s11837-012-0310-8

A. Pettersson, P. Magnusson, P. Lundberg, and M. Nygren, Int. J. Impact Eng. 32, 387-399 (2005), https://doi.org/10.1016/j.ijimpeng.2005.04.003

A. Paman, G. Sukumar, B. Ramakrishna, and V. Madhu, Int. J. Prot. Structures, 11, 185-208 (2020), https://doi.org/10.1177/2041419619860533

L.S. Ahmed, and M.P. Kumar, Mat. Manufact. Processes, 31(7), 951-959 (2016), https://doi.org/10.1080/10426914.2015.1048475

J. Xu, M. Ji, M.C.F. Ren, Mat. Manufact. Processes, 32(12), 1401-1410 (2019), https://doi.org/10.1080/10426914.2019.1661431

J. Xu, C. Li, M. Chen, and, F. Ren, Mat. Manufact. Processes, 34, 1182-1193, (2019) https://doi.org/10.1080/10426914.2019.1615085

K. Mahapatro, and V. Pasam, Smart and Sustainable Manufact. Systems, 4, 62-80 (2020), https://doi.org/10.1520/SSMS20200016

K. Mahapatro, G .Mahendra, A. Markandeya, and P.V. Krishna, Smart and Sustainable Manufact. Systems, 5, 47-64 (2021), https://doi.org/10.1520/SSMS20200041

Published
2021-09-28
Cited
How to Cite
Pathi, H., Mishri, T. K., Panigrahi, S. R., Kuanar, B., & Dalai, B. (2021). A Review on Processing Routes, Properties, Applications, and Challenges of Titanium Metal Matrix Composite. East European Journal of Physics, (3), 5-17. https://doi.org/10.26565/2312-4334-2021-3-01