Research and Development of Novel Materials for Accident Tolerant Fuel Cladding of Nuclear Reactors

  • Kostiantyn V. Lobach National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • Oleksandr S. Kuprin National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • Sergiy Yu. Sayenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • Victor M. Voyevodin National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Igor V. Kolodiy National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
Keywords: fuel elements cladding, corrosion, protective coatings, SiC/SiC composites, Fe-Cr-Al alloys


The paper describes the challenges and worldwide scientific studies aimed for the manufacturing of the fuel elements claddings tolerant to a loss of coolant accidents (Fukushima NPP, March 2011, Japan) for water-cooled reactors. The main research results obtained at NSC KIPT on the development of materials for fuel element claddings, tolerant to accidents with loss of coolant, are given. The structure and properties of the developed vacuum-arc chromium coatings were investigated. It is shown, that these coatings can be used as protective element for existing fuel claddings, made of zirconium alloys, in light-water reactors of the PWR and BWR types. Alloyed SiC-based ceramic was developed to replace zirconium-based fuel claddings. It has been established that doping of 0.5 wt% Cr into SiC leads to an increase in the ability to resist the formation of cracks (crack resistance) by 25 – 30%. The effect of Cr alloying on the corrosion resistance of SiC ceramics under conditions, simulating the medium of the first circuit of the VVER-1000 reactor, is analyzed. It was established that doping of even a small amount of Cr leads to a slowdown in corrosion processes in SiC ceramics. In order to create new material for fuel elements claddings Fe-Cr-Al-based alloys with the doping of alloying elements (Y, Zr and Mo) were also developed and studied. Obtained alloys showed high mechanical properties and resistance to high-temperature oxidation.


Download data is not yet available.


M. Holt, R.J. Campbell, and M.B. Nikitin, Fukushima Nuclear Disaster, (Congressional Research Service, 2012), pp. 12,

S.J. Zinklea, K.A.Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, Journal of Nuclear Materials, 448, 374-379 (2014),

B.-S. Shannon, Nuclear News, 57, 83-91 (2014),

L.J. Ott, K.R. Robb, D. Wang, Journal of Nuclear Materials, 448, 520-533 (2014),

F. Goldner, Development Strategy for Advanced LWR Fuels with Enhanced Accident Tolerance, (US Department of Energy, 2012), pp. 15,

Y.-H. Koo, J.-H. Yang, J.-Y. Park, K.-S. Kim, H.-G. Kim, D.-J. Kim, Y.-I. Jung, and K.-W. Song, Nuclear technology, 186(2), 295-304 (2014),

B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, and J.R. Keiser, Journal of Nuclear Materials, 440, 420-427 (2013),

K.A. Terrani, Journal of Nuclear Materials, 501, 13-30 (2018),

H.A. Mohd, and R. Othman, Advanced Materials Research, 402, 412-420 (2012),

T. Amano, ECS Transactions, 25, 3-19 (2010),

E.J. Opila, J. Am. Ceram. Soc. 86(8), 1238-1248 (2003),

Y. Lee, J.I. Lee, and H.C. No, NET, 49, 1031-1043 (2017),

C. Tang, M. Stueber, H.J. Seifert, and M. Steinbrueck, Corros. Rev. 35, 141-165 (2017),

J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D, Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, and K. Nimishakavi, Nucl. Eng. Technol. 50(2), 223-228 (2018),

V.A. Belous, P.N. V'jugov, A.S. Kuprin, S.A. Leonov, G.I. Nosov, V.D. Ovcharenko, L.S. Ozhigov, et al, PAST, 84(2), 140-143 (2013), (in Russian)

L.S. Ozhigov, V.A. Belous, V.I. Savchenko, G.I. Nosov, V.D. Ovcharenko, G.N. Tolmachova, A.S. Kuprin, and V.S. Goltvyanitsa, PAST, 108(2), 168-172 (2017),

P.I. Stoev, V.A. Belous, V.N. Voevodin, A.S. Kuprin, S.A. Leonov, V.D. Ovcharenko, M.A. Tihonovskij, V.M. Horoshih, PAST, 99(5), 87-97 (2015), (in Russian)

A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, G.N. Tolmachova, P.N. V’ygov, PAST, 89(1), 126-132 (2014),

А.S. Kuprin, V.А. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, and P.N. V'yugov, Journal of Nuclear Materials, 465, 400-406 (2015),

A.S. Kuprin, V.A. Belous, V.V. Bryk, R.L. Vasilenko, V.N. Voyevodin, V.D. Ovcharenko, G.N. Tolmachova, et al, PAST, 96(2), 111-118 (2015),

G.D. Tolstolutskaya, I.E. Kopanetz, V.V. Ruzhytskiy, V.A. Bilous, A.S. Kuprin, V.D. Ovcharenko, R.L. Vasilenko, and S.A. Leonov, PAST, 2015, 96(2), 119-123 (2015),

I.E. Kopanetz, G.D. Tolstolutskaya, A.V. Nikitin, V.A. Belous, A.S. Kuprin, V.D. Ovcharenko, and R.L. Vasilenko, PAST, 99(5), 81-86 (2015),

A.S. Kuprin, V.A. Belous, V.N. Voyevodin, R.L. Vasilenko, V.D. Ovcharenko, G.D.Tolstolutskaya, E. Kopanets, and V. Kolodiy, Journal of Nuclear Materials, 510, 163-167 (2018),

Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Sneada, Journal of Nuclear Materials, 448, 448-476 (2014),

O.A. Ageev, A.E. Beljaev, N.S. Boltovec, V.S. Kiselev, R.V. Konakova, A.A. Lebedev, V.V. Milenin, et al, Карбид кремния: технология, свойства, применение [Silicon carbide: technology, properties, applications], (Kharkiv, ISMA, 2010), рp. 532, (In Russian)

H.-W. Yu, P. Fitriani, S. Lee, J.-Y. Park, and D.-H. Yoon, Ceramics International, 41(6), 7890-7896 (2015),

Y. Katoh, A. Kohyama, T. Nozawa, and M. Sato, Journal of Nuclear Materials, 329-333, 587-591 (2004),

V. Voyevodin, S. Sayenko, K. Lobach, R. Tarasov, A. Zykova, Ye. Svitlychnyi, A. Surkov, et al, PAST, 108(2), 97-102 (2017),

K. Lobach, Y. Kupriiyanova, I. Kolodiy, S. Sayenko, V. Shkuropatenko, V. Voyevodin, A. Zykova, et al, Functional Materials, 25(3), 496-504 (2018),

K.V. Lobach, S.Yu. Sayenko, V.А. Shkuropatenko, V.М. Voyevodin, H.V. Zykova, V.А. Zuyok, A.О. Bykov, et al, Materials Science, 55(5), 672-682 (2020),

D.O. Moskovskikh, Ph.D. Thesis, Получение субмикронного порошка карбида кремния и наноструктуированной керамики не его основе [Manufacturing of submicron silicon carbide powder and nanostructured ceramics on its basis], National University of Science and Technology MISiS, 2015. (In Russian)

S. Kondo, M. Lee, T. Hinoki, Y. Hyodo, and F. Kano, Journal of Nuclear Materials, 464, 36-42 (2015),

V.A. Lavrenko, and Yu.G. Gogotsi, Коррозия конструкторской керамики [Corrosion of engineering ceramics], (Metallurgiya, Moscow, 1989), рp. 199. (In Russian)

S.S. Raiman, P. Doyle, C. Ang, Y. Katoh, and K.A. Terrani, Corrosion, 75(2), 217 (2019),

H. Hirayama, T. Kawakubo, A. Goto, and T. Kaneko, J. Am. Ceram. Soc. 72, 2049-2053 (1989),

E.J. Opila, N.S. Jacobson, D.L. Myers, E.H. Copland, The Journal of The Minerals, Metals & Materials Society, (TMS). 58(1), 22-28 (2006),

Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, and H. Abe, Nuclear Engineering and Design, 316, 131-150 (2017),

K.A. Terrani, B.A. Pint, Y.-J. Kim , K.A. Unocic, Y. Yang, C.M. Silva, H.M. Meyer, and R.B. Rebak, Journal of Nuclear Materials, 479, 36-47 (2016),

В.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, Metallurgical and Materials Transactions E, 2, 190-196 (2015),

X. Wu, T. Kozlowski, and J.D. Hales, Annals of Nuclear Energy, 85, 763-775 (2015),

K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, and L.L. Snead, Journal of Nuclear Materials, 465, 746 – 755 (2015),

I I.V. Kolodiy, V.A. Belous, M.A. Bortnitskaya, R.L. Vasilenko, V.N. Voyevodin, V.I. Kovalenko, A.S. Kuprin, et al, Functional materials, 27(1), 79-86 (2020),

A. Leyland, and A. Matthews, Wear, 246, 1-11 (2000),

J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol. 154, 304-313 (2002),

How to Cite
Lobach, K. V., Kuprin, O. S., Sayenko, S. Y., Voyevodin, V. M., & Kolodiy, I. V. (2020). Research and Development of Novel Materials for Accident Tolerant Fuel Cladding of Nuclear Reactors. East European Journal of Physics, (4), 75-83.

Most read articles by the same author(s)