Electronic Properties of Bulk and Single-Layer MoS2 Using ab Initio DFT: Application of Spin-Orbit Coupling (SOC) Parameters

  • Michael Gyan School of Physics, University of Electronic Science and Technology of China, Chengdu, China https://orcid.org/0000-0001-6337-2205
  • Francis E. Botchway School of Material Science, University of Electronic Science and Technology of China, Chengdu, China; Koforidua, Technical University, Ghana https://orcid.org/0000-0001-8327-4469
  • Joseph Parbey School of Physics, University of Electronic Science and Technology of China, Chengdu, China; School of Material Science, University of Electronic Science and Technology of China, Chengdu, China; Koforidua, Technical University, Ghana https://orcid.org/0000-0002-0277-0098
Keywords: Electronic properties, Density functional theory, Spin-orbit coupling, Density of states, MoS2, bandgap

Abstract

Two dimensional (2D) materials are currently gaining a lot of interest due to excellent properties that are different from their bulk structures. Single and few-layered of Transition metal dichalcogenides (TMDCs) have a bandgap that ranges between 1-2 eV, which is used for FET devices or any optoelectronic devices. Within TMDCs, a ton of consideration is focused on Molybdenum Disulfide (MoS2) because of its promising band gap-tuning and transition between direct to indirect bandgap properties relies upon its thickness. The density functional theory (DFT) calculations with different functionals and spin-orbit coupling (SOC) parameters were carried out to study the electronic properties of bulk and monolayer MoS2. The addition of SOC brought about a noteworthy change in the profile of the band energy, explicitly the splitting of the valence band maximum (VBM) into two sub-bands. The indirect bandgap in bulk MoS2 ranges from 1.17- 1.71eV and that of the monolayer bandgap was 1.6 – 1.71eV. The calculated parameters were compared to the obtained experimental and theoretical results. The obtained density of states (DOS) can be used in explaining the nature of bandgap in both the bulk and monolayer MoS2.  These electronic characteristics are important for applications in material devices and energy-saving applications

Downloads

Download data is not yet available.

References

K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, PNAS, 102(30), 10451 10453 (2005), https://doi.org/10.1073/pnas.0502848102.

W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang, Critical Reviews in Solid State and Materials Sciences, 35, 52 71 (2010), https://doi.org/10.1080/10408430903505036

M.J. Allen, V.C. Tung, and R.B. Kaner, Chemical Reviews, 110(1), 132-145 (2010), https://doi.org/10.1021/cr900070d.

H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, ACS Nano. 8(4), 4033-4041 (2014), https://doi.org/10.1021/nn501226z.

B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Applied Physics Letters, 97(22), 223109 (2010), https://doi.org/10.1063/1.3524215.

Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nature Nanotechnology, 7(11), 699-712 (2012), https://doi.org/10.1038/nnano.2012.193.

M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, and S. Jalali-Asadabadi, Physics Letters A, 381(6), 663-670 (2017), https://doi.org/10.1016/j.physleta.2016.11.040.

S. Das, J.A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annual Review of Materials Research, 45(1), 1-27 (2015), https://doi.org/10.1146/annurev-matsci-070214-021034.

D.J. Late, B. Liu, H. Matte, C.N.R. Rao, and V.P. Dravid, Advanced Functional Materials, 22(9), 1894-1905 (2012), https://doi.org/10.1002/adfm.201102913.

C.V. Nguyen, N.N. Hieu, D. Muoi, C.A. Duque, E. Feddi, H.V. Nguyen, L.T.T. Phuong, B.D. Hoi, and H.V. Phuc, Journal of Applied Physics, 123(3), 034301 (2018), https://doi.org/10.1063/1.5009481.

M.H. Fekri, R. Bazvand, M. Soleymani, and M.R. Mehr, International Journal of Nano Dimension, 11(4), 346-354 (2020), http://www.ijnd.ir/article_675374_91ad4efdd80a983d0ba8492569c8e510.pdf.

W. Zhang, Z. Huang, W. Zhang, and Y. Li, "Two-Dimensional Semiconductors with Possible High Room Temperature Mobility," Nano Research, 7(12), 1731-1737 (2014), https://doi.org/10.1007/s12274-014-0532-x.

M. Khaleghian, and F. Azarakhshi, International Journal of Nano Dimension, 10(1), 105-113 (2019), http://www.ijnd.ir/article_661564_d54fcf021f466ebbe353d21c7a171061.pdf.

J.A. Wilson, and A.D. Yoffe, Advances in Physics, 18(73), 193-335 (1969), https://doi.org/10.1080/00018736900101307.

Y. Kim, J.L. Huang, and C.M. Lieber, Applied Physics Letters, 59(26), 3404-3406 (1991), https://doi.org/10.1063/1.105689.

A.H. Reshak, and S. Auluck, Physical Review B, 68, 125101 (2003), https://doi.org/10.1103/PhysRevB.68.125101.

E. Fortin and W.M. Sears, Journal of Physics and Chemistry of Solids. 43(9), 881-884 (1982), https://doi.org/10.1016/0022-3697(82)90037-3.

K.H. Hu, X.G. Hu, and X.J. Sun, Applied Surface Science, 256(8), 2517-2523 (2010), https://doi.org/10.1016/j.apsusc.2009.10.098.

K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Physical Review Letters, 105(13), 36805 (2010), https://doi.org/10.1103/PhysRevLett.105.136805.

P. Joensen, R.F. Frindt, and S.R. Morrison, Materials Research Bulletin, 21(4), 457-461 (1986), https://doi.org/10.1016/0025-5408(86)90011-5.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology, 6, 147 (2011), https://doi.org/10.1038/nnano.2010.279.

J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Science, 331(6017), 568-571 (2011), https://doi.org/10.1126/science.1194975.

D. Dey, and D. De, Int. J. Nano Dimens. 9(2), 134-144 (2018), http://www.ijnd.ir/article_658988_772299c871dafd993e3f08bec602d2a1.pdf.

J.K. Ellis, M.J. Lucero, and G.E. Scuseria, Applied Physics Letters, 99(26), 261908 (2011), https://doi.org/10.1063/1.3672219.

S. Ahmad, and S. Mukherjee, Graphene, 3, 52-59 (2014), http://dx.doi.org/10.4236/graphene.2014.34008.

A. Kumar, and P.K. Ahluwalia, Materials Chemistry and Physics, 135(2), 755-761 (2012), https://doi.org/10.1016/j.matchemphys.2012.05.055.

Th. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Physical Review B, 64, 235305 (2001), https://doi.org/10.1103/PhysRevB.64.235305

D.P. Rai, T.V. Vu, A. Laref, Md.A. Hossain, E. Haque, S. Ahmad, R. Khenatag, and R.K. Thapah, RSC Advances, 10(32), 18830-18840 (2020), https://doi.org/10.1039/D0RA02585B.

F.J. Urbanos, A. Black, R. Bernardo-Gavito, A.L. Vázquez de Parga, R. Miranda, and D. Granados, Nanoscale, 11(23), 11152-11158 (2019), https://doi.org/10.1039/c9nr02464f.

Tung Pham, Guanghui Li, Elena Bekyarova, Mikhail E. Itkis, and Ashok Mulchandani, ACS Nano, 13(3), 3196-3205 (2019), https://doi.org/10.1021/acsnano.8b08778.

N. Goel, R. Kumar, and M. Kumar, AIP Conference Proceedings, 1942(1), 050060 (2018), https://doi.org/10.1063/1.5028691.

M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, Journal of Physics: Condensed Matter, 14(11), 2717-2744 (2002), https://doi.org/10.1088/0953-8984/14/11/301.

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Zeitschrift für Kristallographie. 220(5-6), 567-570 (2005), https://doi.org/10.1524/zkri.220.5.567.65075.

D.M. Hoat, T.V. Vu, M.M. Obeid, and H.R. Jappor, Chemical Physics, 527, 110499 (2019), https://doi.org/10.1016/j.chemphys.2019.110499.

J.P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters, 77(18), 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)]," Physical Review Letters, 78(7), 1396-1396 (1997), https://doi.org/10.1103/PhysRevLett.77.3865.

A.H. MacDonald, W.E. Picket, and D.D. Koelling, Journal of Physics C: Solid State Physics, 13(14), 2675-2683 (1980), https://doi.org/10.1088/0022-3719/13/14/009.

K. Kobayashi, and J. Yamauchi, Surface Science, 357-358, 317-321 (1996), https://doi.org/10.1016/0039-6028(96)00173-2.

L.F. Mattheiss, Physical Review Letters, 30, 784-787 (1973), https://doi.org/10.1103/PhysRevLett.30.784.

C. Ataca, and S. Ciraci, The Journal of Physical Chemistry C, 115(27), 13303-13311 (2011), https://doi.org/10.1021/jp2000442.

S. Lebègue, and O. Eriksson, Physical Review B, 79(11), 115409 (2009), https://doi.org/10.1103/PhysRevB.79.115409.

A. Kuc, N. Zibouche, and T. Heine, Physical Review B, 83(24), 245213 (2011), https://doi.org/10.1103/PhysRevB.83.245213.

Z.Y. Zhu, Y.C. Cheng, and U. Schwingenschlögl, Physical Review B, 84(15), 153402 (2011), https://doi.org/10.1103/PhysRevB.84.153402.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Physical Review Letters, 108(19), 196802 (2012), https://doi.org/10.1103/PhysRevLett.108.196802.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nature Nanotechnology, 7(8), 490-493 (2012), https://doi.org/10.1038/nnano.2012.95.

M. Bieniek, L. Szulakowska, and P. Hawrylak, Physical Review B, 101(3), 035401 (2020), https://doi.org/10.1103/PhysRevB.101.035401.

Q. Chen, L. Liang, G. Potsi, P. Wan, J. Lu, T. Giousis, E. Thomou, D. Gournis, P. Rudolf, and J. Ye, Nano Letters, 19(3), 1520-1526 (2019), https://doi.org/10.1021/acs.nanolett.8b04207.

C.-H. Chang, X. Fan, S.-H. Lin, and J.-L. Kuo, Physical Review B, 88(19), 195420 (2013), https://doi.org/10.1103/PhysRevB.88.195420.

D.Y. Qiu, F.H. da Jornada, and S.G. Louie, Physical Review Letters, 111(21), 216805 (2013), https://doi.org/10.1103/PhysRevLett.111.216805.

A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Physical Review B, 88(4), 045412 (2013), https://doi.org/10.1103/PhysRevB.88.045412.

N. Alidoust, G. Bian, S.-Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D.-X. Qu, J.D. Denlinger, F.-C. Chou, and M.Z. Hasan, Nature Communications, 5, 4673 (2014), https://doi.org/10.1038/ncomms5673.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, ACS Nano. 10(1), 1619-1624 (2016), https://doi.org/10.1021/acsnano.5b07273.

N. Zibouche, A. Kuc, J. Musfeldt, and T. Heine, Annalen der Physik, 526(9-10), 395-401 (2014), https://doi.org/10.1002/andp.201400137.

Published
2020-11-18
Cited
0 article
How to Cite
Gyan, M., Botchway, F., & Parbey, J. (2020). Electronic Properties of Bulk and Single-Layer MoS2 Using ab Initio DFT: Application of Spin-Orbit Coupling (SOC) Parameters. East European Journal of Physics, (4), 69-74. https://doi.org/10.26565/2312-4334-2020-4-09