Synthesis and Characterization of TiO2 thin film Electrode based Dye Sensitized Solar Cell
Abstract
Dye-Sensitized Solar Cells (DSSCs) are prominent alternative devices to conventional p-n junction silicon based solar cells because of their low fabrication cost and high power conversion efficiency, good cost/efficiency ratio. In the present work, DSSC devices were made-up with fluorine doped tin oxide (FTO) glass substrate, a TiO2 compact layer was deposited on FTO, Ruthenium(II) dye (N719), an iodide - triiodide electrolyte and a platinum (Pt) counter electrode. Photo anode with thin film layers of TiO2 and Pt counter electrode (photo-cathode) were prepared. Field emission electron microscope (FESEM) was employed to investigate the surface morphology of TiO2 layers. The DSSC device efficiency was evaluated by J-V characteristics. Fabricated devices were exhibited high power conversion efficiencies. The electrochemical impedance characteristics were analyzed by fitting the experimental results to the corresponding electrical equivalent circuit simulated data.
Downloads
References
O. K. Simya, M. Selvam, A. Karthik, V. Rajendran, Synth. Met. 188, 124–129 (2014), https://doi.org/10.1016/j.synthmet.2013.12.005.
S. Battersby, Proc. Natl. Acad. Sci. 116, 7-10 (2019), https://doi.org/10.1073/pnas.1820406116.
M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003), https://doi.org/10.1016/S1389-5567(03)00026-1.
K. Ebrahim, Sol. Cells - Dye. Devices, InTech. 171-204 (2012), https://doi.org/10.5772/19749.
W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, Thin Solid Films. 517, 4663–4667 (2009), https://doi.org/10.1016/j.tsf.2009.02.129.
D. Wei, Int. J. Mol. Sci. 11, 1103–13 (2010), https://doi.org/10.3390/ijms11031103.
S. Bose, V. Soni, and K.R. Genwa, Int. J. Sci. Res. Publ. 5, 2250–3153 (2015), http://www.ijsrp.org/research-paper-0415.php?rp=P403882.
B.O. Regan, and M. Gratzel, Nature, 353, 737–740 (1991), https://doi.org/10.1038/353737a0.
C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, and D. Dini, J. Nanomater. 2017, 1–31 (2017), https://doi.org/10.1155/2017/5323164.
J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68, 234–246 (2017), https://doi.org/10.1016/j.rser.2016.09.097.
S. Yun, J.N. Freitas, A.F. Nogueira, Y. Wang, S. Ahmad, and Z.S. Wang, Prog. Polym. Sci. 59, 1–40 (2016), https://doi.org/10.1016/j.progpolymsci.2015.10.004.
M. Eslamian, and J. Newton, Coatings. 4, 85–97 (2014), https://doi.org/10.3390/coatings4010085.
A. Jena, S.P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H.K. Narula, S. Mallick, and P. Bhargava, Trans. Indian Ceram. Soc. 71, 1–16 (2012), https://doi.org/10.1080/0371750X.2012.689503.
K. Miettunen, J. Vapaavuori, A. Tiihonen, A. Poskela, P. Lahtinen, J. Halme, and P. Lund, Nano Energy. 8, 95–102 (2014), https://doi.org/10.1016/j.nanoen.2014.05.013.
B. Siwach, D. Mohan, S. Sharma, and D. Jyoti, Bull. Mater. Sci. 40, 1371–1377 (2017), https://doi.org/10.1007/s12034-017-1492-z.
T. Phonkhokkong, T. Thongtem, S. Thongtem, A. Phuruangrat, and W. Promnopas, Dig. J. Nanomater. Biostructures. 11, 81–90 (2016), http://www.chalcogen.ro/81_Phonkhokkong.pdf.
T.V. Nguyen, H.C. Lee, and O.B. Yang, Sol. Energy Mater. Sol. Cells. 90, 967–981 (2006), https://doi.org/10.1016/j.solmat.2005.06.001.
S. Xuhui, C. Xinglan, T. Wanquan, W. Dong, and L. Kefei, AIP Adv. 4, 031304 (2014), https://doi.org/10.1063/1.4863295.
S. Widodo, G. Wiranto, and M.N. Hidayat, Energy Procedia. 68, 37–44 (2015), https://doi.org/10.1016/j.egypro.2015.03.230.
A. Karmakar, and J. Ruparelia, in International Conference on Current Trends in Technology, NUiCONE, (IEEE, Piscataway, 2011), pp. 1 6.
D.L. Domtau, J. Simiyu, E.O. Ayieta, L.O. Nyakiti, B. Muthoka, and J.M. Mwabora, Surf. Rev. Lett. 24, 1750065 (2017), https://doi.org/10.1142/S0218625X17500652.
B. Alfa, M.T. Tsepav, R.L. Njinga, and I. Abdulrauf, Appl. Phys. Res. 4, 48-56 (2012), https://doi.org/10.5539/apr.v4n1p48.
A.F. Ole, G.N.C. Santos, and R.V Quiroga, Int. JSER, 3, 1-7 (2012).
L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song, and R. Fan, Inorg. Chem. Front. 5, 54–62 (2018), https://doi.org/10.1039/C7QI00503B.
Z.A. Shah, K. Zaib, and A. Khan, J. Fundam Renewable Energy Appl. 7, 4-6 (2017).
H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, Electrochim. Acta. 54, 1319-1324 (2009), https://doi.org/10.1016/j.electacta.2008.09.025.
J.C. Chou, C.M. Chu, Y.H. Liao, C.H. Lai, Y.J. Lin, P.H. You, W.Y. Hsu, C.C. Lu, and Y.H. Nien, IEEE J. Electron Devices Soc. 5, 32-39 (2017).
A. Upadhyaya, C.M. Singh Negi, A. Yadav, S.K. Gupta, and A.S. Verma, Superlattices Microstruct. 122, 410-418 (2018).
N. Sharma, C.M.S. Negi, A.S. Verma, and S.K. Gupta, J. Electron. Mater. 47, 7023-7033 (2018), https://doi.org/10.1007/s11664-018-6629-3.
A.S. Verma, A. Upadhyaya, S.K. Gupta, A. Yadav, and C.M.S. Negi, Semicond. Sci. Technol. 33, 065012 (2018), https://doi.org/10.1088/1361-6641/aac066.
Copyright (c) 2020 Varsha Yadav, Swati Chaudhary, Saral Kumar Gupta, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).