INTERACTION OF EUROPIUM CHELATES WITH LIPID MONOLAYERS

  • Valeriya Trusova Department of Biological and Medical Physics, V.N. Karazin Kharkov National University4 Svobody Sq., Kharkov, 61022, Ukraine https://orcid.org/0000-0002-7087-071X
  • A. Yudintsev Department of Biological and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine https://orcid.org/0000-0003-0333-5095
  • O. Kutsenko Department of Biological and Medical Physics, V.N. Karazin Kharkov National University4 Svobody Sq., Kharkov, 61022, Ukraine https://orcid.org/0000-0002-6670-7119
  • O. Pakhomova Department of Biological and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine
  • R. Volinsky Department of Biomedical Engineering and Computational Science, School of Science and Technology Aalto University, FI-00076, Espoo, Finland
  • Galyna Gorbenko Department of Biological and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine https://orcid.org/0000-0002-0954-5053
  • T. Deligeorgiev Departemnt of Applied Organic Chemistry, Faculty of Chemistry and Pharmacy University of Sofia, Sofia 1164, Bulgaria
  • Päivi Kinnunen Department of Biomedical Engineering and Computational Science, School of Science and Technology Aalto University, FI-00076, Espoo, Finland https://orcid.org/0000-0002-8650-4925

Abstract

The ability of novel anticancer drug candidates, europium coordination complexes (EC), to penetrate the phospholipid monolayer composed of dimyristoylphosphatidylcholine (DMPC) was studied using Langmuir monolayer technique. EC were found to insert readily into the lipid monolayer with penetration extent being dependent on both drug structure and initial surface pressure of the lipid film. Evaluation of the limiting surface pressure revealed that all drugs are capable of inserting into the cellular membranes.

Downloads

Download data is not yet available.

Author Biographies

Valeriya Trusova, Department of Biological and Medical Physics, V.N. Karazin Kharkov National University4 Svobody Sq., Kharkov, 61022, Ukraine
Galyna Gorbenko, Department of Biological and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine

References

Hill K., et al. Amphiphilic nature of new antitubercular drug candidates and their interaction with lipid monolayer // Progr. Colloid Polym. Sci. – 2008. – Vol. 135. – P. 87-92.

Peng J., Barnes G., Gentle I. The structure of LB films of fatty acids and salts // Adv. Colloid Interface Sci. – 2001. – Vol. 91. – P. 163-219.

Brockman H. Lipid monolayers: why use half of membrane to characterize protein-membrane interactions // Curr. Opin. Struct. Biol. – 1999. – Vol. 9. – P. 438-443.

Preetha A., Huilgol N., Banerjee R. Comparison of paclitaxel penetration in normal and cancerous cervical model monolayer membranes // Colloids Surfaces B: Biointerfaces. – 2006. – Vol. 53. – P. 179-186.

Seelig A. The use of monolayers for simple and quantitative analysis of lipid-drug interactions exemplified with dubicaine nd substance P // Cell Biol. Internat. Reports – 1990. – Vol.4. – P. 369-380.

Krill S., et al. Penetration of dimyrstoylphosphatidylcholine monolayers and bilayers by model beta-blocker agents of varying lipophilicity // J. Pharmaceut. Sci. – 1998. – Vol. 87. – P. 751-756.

Agasosler A., et al. Chlorpromazine-induced increase in dipalmitoylphosphatidylserine surface area in monolayers at room temperature // Biochem. Pharmacol. – 2001. – Vol. 61. – P. 817-825.

Yudintsev A., et al. Lipid bilayer interactions of Eu (III) tris - beta – diketonato coordination complex // Chem. Phys. Letters. – 2008. – Vol. 457. – P. 417-420.

Yudintsev A. Fluorescence study of interactions between europium coordination complex and model membranes / A. Yudintsev et al. // J. Biol. Phys. Chem. – 2010. – Vol. 10. – P. 55-62.

Momekov G., et al. Evaluation of the cytotoxic and pro-apoptotic activities of Eu(III) complexes with appended DNA intercalators in a panel of human malignant cell lines //Med. Chem. – 2006. – Vol. 2. – P. 439-445.

Bünzli J., Piguet C. Taking advantage of luminescent lanthanide ions // Chem. Soc. Rev. – 2005. – Vol. 34. – P. 1048-1077.

Vogler A., Kunkely H. Excited state properties of lanthanide complexes: beyond ff states // Inorg. Chim. Acta. – 2006. – Vol. 359. – P. 4130-4138.

Maas H., Curao A., Calzaferri G. Encapsulated lanthanides as luminescent materials // Angew. Chem. Int. Ed. – 2002. – Vol. 41. – P. 2495-2497.

Orcutt K., et al. A lanthanide-based chemosensor for bioavailable Fe3+ using a fluorescent siderophore: an assay displacementapproach // Sensors. – 2010. – Vol. 10. – P. 1326-1337.

Yuan J., Wang G. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay // J. Fluoresc. – 2005. – Vol. 15. – P. 559-568.

Bakker B., et al. Luminescent materials and devices: lanthanide azatriphenylene complexes and electroluminescent charge transfer systems // Coord. Chem. Rev. – 2000. – Vol. 208. – P. 3-16.

Dean Sherry A. Lanthanide chelates as magnetic resonance imaging contrast agents // J. Less. Common Met. – 1989. – Vol. 149. – P. 133-141.

Thompson K., Orvig C. Lanthanide compounds for therapeutic and diagnostic applications // Chem. Soc. Rev. – 2006. – Vol. 35. – P. 499-499.

Kostova I. Lanthanides as anticancer drugs // Curr. Med. Chem. Anticancer Agents. – 2005. – Vol. 5. – P. 591-602.

Evans C. Interesting and useful biochemical properties of lanthanides // Trends Biochem. Sci. – 1983. – Vol. 8. – P. 445-449.

Calvez P., Bussieres S., Demers E., Salesse C. // Biochimie. – 2009. – Vol.91. – P.718-733.

Published
2015-03-25
Cited
How to Cite
Trusova, V., Yudintsev, A., Kutsenko, O., Pakhomova, O., Volinsky, R., Gorbenko, G., Deligeorgiev, T., & Kinnunen, P. (2015). INTERACTION OF EUROPIUM CHELATES WITH LIPID MONOLAYERS. East European Journal of Physics, 1(4), 100-105. https://doi.org/10.26565/2312-4334-2014-4-13