SMALL ANGLE X-RAY SCATTERING STUDY OF INSULIN FIBRILS

  • M. V. Romanova Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov, 61022, Ukraine;
  • I. L. Maliyov Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov, 61022, Ukraine
  • M. S. Girych Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov, 61022, Ukraine
  • Kateryna A. Vus Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkov, 61022, Ukraine; https://orcid.org/0000-0003-4738-4016
  • Dmitri I. Svergun European Molecular Biology Laboratory (EMBL) Hamburg Outstation, Notkestrasse 85, D22603 Hamburg, Germany. https://orcid.org/0000-0003-0830-5696
  • Al. Kikhney European Molecular Biology Laboratory (EMBL) Hamburg Outstation, Notkestrasse 85, D22603 Hamburg, Germany. https://orcid.org/0000-0003-1321-3956
  • C. Jeffries European Molecular Biology Laboratory (EMBL) Hamburg Outstation, Notkestrasse 85, D22603 Hamburg, Germany.

Abstract

The small-angle X-ray scattering technique was employed to determine low-resolution 3D structure of insulin amyloid fibrils. This object is of particular interest since amyloid deposits of insulin causes insulin injection amyloidosis. Structural characterization of amyloid fibrils as a particular class of linear highly ordered protein aggregates is of utmost importance for deeper understanding of the molecular etiology of conformational diseases and development of effective therapeutic strategies. The small-angle X-ray scattering pattern analysis showed that the maximum dimension of the insulin fibril cross-section reaches 24±2.4 nm, while gyration radius of the cross-section is about 6 nm.

Downloads

Download data is not yet available.

Author Biography

C. Jeffries, European Molecular Biology Laboratory (EMBL) Hamburg Outstation, Notkestrasse 85, D22603 Hamburg, Germany.

 



References

Dobson C.M. Protein folding and misfolding // Nature. – 2003. – Vol. 426. – P. 884–890.

Girych M.S., Maliyov I.L., Romanova M.V., et.al. Fluorescence energy transfer study into lipid bilayer interactions of truncated apolipoprotein a-i mutants // Biophys. – 2013. – Vol. 29(1). – P. 39-50.

Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world // Biochim. Biophys. Acta. – 2004. –Vol. 1739. – P. 5–25.

Greenwald J., Riek R. Biology of Amyloid: Structure, Function, and Regulation // Structure. – 2010. – Vol. 18. – P. 1244-1260.

Eichner T., Radford Sh. E. A Diversity Of Assembly Mechanisms Of A Generic Amyloid Fold // Molecular Cell. – 2011. – Vol. 43. – P. 8-18.

Vestergaard B., Groenning M., Roessle M., et.al. A Helical Structural Nucleus Is The Primary Elongating Unit Of Insulin Amyloid Fibrils // PLoS Biology. – 2007. –Vol.5. –P. 1089-1097.

Adamcik J., Mezzenga R. Study of amyloid fibrils via atomic force microscopy // Current Opinion in Colloid & Interface Science. – 2012. – Vol. 17. – P. 369–376.

Jimenez J. L., Nettleton E. J., Bouchard M., et.al. The protofilament structure of insulin amyloid fibrils // PNAS. – 2002. – Vol. 99. – P. 9196–9201.

Yamamoto Sh., Watarai H. Raman Optical Activity Study on Insulin Amyloid and Prefibril Intermediate // Chirality. – 2012. – Vol. 24. – P. 97–103.

Berhanu W. M., Masunov A. E. Alternative Packing Modes Leading to Amyloid Polymorphism in Five Fragments Studied With Molecular Dynamics // PeptideScience. – 2011. –Vol. 98. – P. 131-144.

Greenwald J., Riek R. Biology of Amyloid: Structure, Function and Regulation // Structure. –2010. – Vol.18. – P. 1244-1260.

Swift B.. Examination of insulin injection sites: an unexpected finding of localized amyloidosis // Diabet. Med. – 2002. – Vol. 19. – P. 881–882.

Svergun D. Advanced solution scattering data analysis methods and their applications // J. Appl. Cryst. – 2000. – Vol. 33. – P. 530-534.

Svergun D. Mathematical methods in small-angle scattering data analysis // J. Appl. Cryst. – 2000. – Vol. 24. – P. 485-492.

Petoukhov M. V., Eady N. A., Brown K. A., Svergun, D. I. Addition of missing loops and domains to protein models by x-ray solution scattering. // Biophys. J. – 2002. –Vol. 83. –P. 3113-3125.

Garcia P. , Ucurum Z., Bucher R., et.al. Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase // FASEB J. – 2006. –Vol. 20. –P. 1142-51.

Durand D., Cannella D., Dubosclard V., et.al. Small-angle X-ray scattering reveals an extended organization for the autoinhibitory resting state of the p47(phox) modular protein // Biochemistry. – 2006. – Vol. 45. – P. 7185-93.

Svergun D. I., Koch M.H.J. Small-angle scattering studies of biological macromolecules in solution // Rep. Prog. Phys. – 2003. – Vol. 66. – P. 1735–1782.

Glatter O., Kratky O. Small Angle X-ray Scattering. Ch.1 – London: Academic Press, 1982. – 7 p.

Konarev P.V., Volkov V.V., Sokolova A.V., et.al. PRIMUS – a Windows-PC based system for small-angle scattering data analysis // J. Appl. Cryst. – 2003. – Vol. 36. – P. 1277-1282.

Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria // J. Appl. Crystallogr. – 1992. – Vol. 25. – P. 495-503.

Szymanska A., Hornowski T., Kozak M., Slosarek G. The SAXS and Rheological Studies of HEWL Amyloid Formation // Acta Physica Polonica. – 2008. – Vol. 114. – P. 447-454.

Kun Lu, Jacob J., Thiyagarajan P., et.al. Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly // J. AM. CHEM. SOC. – 2003. – Vol. 125. – P. 6391-6393.

Fitzpatrick A. W. P., Debelouchina G. T., Bayro M. J., et.al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril // PNAS. – 2012. – Vol. 110. – P. 5468–5473.

Khurana R., Ionescu-Zanetti C., Pope M., et.al. A General Model for Amyloid Fibril Assembly Based on Morphological Studies Using Atomic Force Microscopy // Biophysical Journal. – 2003. – Vol. 85. – P. 1135–1144.

Jansen R., Dzwolak W., Winter R. Amyloidogenic Self-Assembly of Insulin Aggregates Probed by High Resolution Atomic Force Microscopy // Biophysical Journal. – 2005. – Vol. 88. – P. 1344–1353.

Brange J., Andersen L., Laursen E. D., et.al. Toward understanding insulin fibrillation // J. Pharm. Sci. – 1997. – Vol. 86. – P. 517–525.

Published
2015-03-25
Cited
How to Cite
Romanova, M. V., Maliyov, I. L., Girych, M. S., Vus, K. A., Svergun, D. I., Kikhney, A., & Jeffries, C. (2015). SMALL ANGLE X-RAY SCATTERING STUDY OF INSULIN FIBRILS. East European Journal of Physics, 1(4), 96-99. https://doi.org/10.26565/2312-4334-2014-4-12