SMALL ANGLE X-RAY SCATTERING STUDY OF INSULIN FIBRILS
Abstract
The small-angle X-ray scattering technique was employed to determine low-resolution 3D structure of insulin amyloid fibrils. This object is of particular interest since amyloid deposits of insulin causes insulin injection amyloidosis. Structural characterization of amyloid fibrils as a particular class of linear highly ordered protein aggregates is of utmost importance for deeper understanding of the molecular etiology of conformational diseases and development of effective therapeutic strategies. The small-angle X-ray scattering pattern analysis showed that the maximum dimension of the insulin fibril cross-section reaches 24±2.4 nm, while gyration radius of the cross-section is about 6 nm.
Downloads
References
Dobson C.M. Protein folding and misfolding // Nature. – 2003. – Vol. 426. – P. 884–890.
Girych M.S., Maliyov I.L., Romanova M.V., et.al. Fluorescence energy transfer study into lipid bilayer interactions of truncated apolipoprotein a-i mutants // Biophys. – 2013. – Vol. 29(1). – P. 39-50.
Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world // Biochim. Biophys. Acta. – 2004. –Vol. 1739. – P. 5–25.
Greenwald J., Riek R. Biology of Amyloid: Structure, Function, and Regulation // Structure. – 2010. – Vol. 18. – P. 1244-1260.
Eichner T., Radford Sh. E. A Diversity Of Assembly Mechanisms Of A Generic Amyloid Fold // Molecular Cell. – 2011. – Vol. 43. – P. 8-18.
Vestergaard B., Groenning M., Roessle M., et.al. A Helical Structural Nucleus Is The Primary Elongating Unit Of Insulin Amyloid Fibrils // PLoS Biology. – 2007. –Vol.5. –P. 1089-1097.
Adamcik J., Mezzenga R. Study of amyloid fibrils via atomic force microscopy // Current Opinion in Colloid & Interface Science. – 2012. – Vol. 17. – P. 369–376.
Jimenez J. L., Nettleton E. J., Bouchard M., et.al. The protofilament structure of insulin amyloid fibrils // PNAS. – 2002. – Vol. 99. – P. 9196–9201.
Yamamoto Sh., Watarai H. Raman Optical Activity Study on Insulin Amyloid and Prefibril Intermediate // Chirality. – 2012. – Vol. 24. – P. 97–103.
Berhanu W. M., Masunov A. E. Alternative Packing Modes Leading to Amyloid Polymorphism in Five Fragments Studied With Molecular Dynamics // PeptideScience. – 2011. –Vol. 98. – P. 131-144.
Greenwald J., Riek R. Biology of Amyloid: Structure, Function and Regulation // Structure. –2010. – Vol.18. – P. 1244-1260.
Swift B.. Examination of insulin injection sites: an unexpected finding of localized amyloidosis // Diabet. Med. – 2002. – Vol. 19. – P. 881–882.
Svergun D. Advanced solution scattering data analysis methods and their applications // J. Appl. Cryst. – 2000. – Vol. 33. – P. 530-534.
Svergun D. Mathematical methods in small-angle scattering data analysis // J. Appl. Cryst. – 2000. – Vol. 24. – P. 485-492.
Petoukhov M. V., Eady N. A., Brown K. A., Svergun, D. I. Addition of missing loops and domains to protein models by x-ray solution scattering. // Biophys. J. – 2002. –Vol. 83. –P. 3113-3125.
Garcia P. , Ucurum Z., Bucher R., et.al. Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase // FASEB J. – 2006. –Vol. 20. –P. 1142-51.
Durand D., Cannella D., Dubosclard V., et.al. Small-angle X-ray scattering reveals an extended organization for the autoinhibitory resting state of the p47(phox) modular protein // Biochemistry. – 2006. – Vol. 45. – P. 7185-93.
Svergun D. I., Koch M.H.J. Small-angle scattering studies of biological macromolecules in solution // Rep. Prog. Phys. – 2003. – Vol. 66. – P. 1735–1782.
Glatter O., Kratky O. Small Angle X-ray Scattering. Ch.1 – London: Academic Press, 1982. – 7 p.
Konarev P.V., Volkov V.V., Sokolova A.V., et.al. PRIMUS – a Windows-PC based system for small-angle scattering data analysis // J. Appl. Cryst. – 2003. – Vol. 36. – P. 1277-1282.
Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria // J. Appl. Crystallogr. – 1992. – Vol. 25. – P. 495-503.
Szymanska A., Hornowski T., Kozak M., Slosarek G. The SAXS and Rheological Studies of HEWL Amyloid Formation // Acta Physica Polonica. – 2008. – Vol. 114. – P. 447-454.
Kun Lu, Jacob J., Thiyagarajan P., et.al. Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly // J. AM. CHEM. SOC. – 2003. – Vol. 125. – P. 6391-6393.
Fitzpatrick A. W. P., Debelouchina G. T., Bayro M. J., et.al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril // PNAS. – 2012. – Vol. 110. – P. 5468–5473.
Khurana R., Ionescu-Zanetti C., Pope M., et.al. A General Model for Amyloid Fibril Assembly Based on Morphological Studies Using Atomic Force Microscopy // Biophysical Journal. – 2003. – Vol. 85. – P. 1135–1144.
Jansen R., Dzwolak W., Winter R. Amyloidogenic Self-Assembly of Insulin Aggregates Probed by High Resolution Atomic Force Microscopy // Biophysical Journal. – 2005. – Vol. 88. – P. 1344–1353.
Brange J., Andersen L., Laursen E. D., et.al. Toward understanding insulin fibrillation // J. Pharm. Sci. – 1997. – Vol. 86. – P. 517–525.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).