Partial Hamiltonian formalism, multi-time dynamics and singular theories

Keywords: degenerated Lagrangian, Hamiltonian, Hessian, Hamilton-Jacobi equation, many-time dynamics, bracket

Abstract

In this paper we formulate singular theories (determined by degenerate Lagrangians) without involving constraints. We construct a partial Hamiltonian formalism in reduced phase space (with arbitrary number of momenta). The equations of motion are first-order differential equations, and they coincide with ones of the multi-time dynamics under a certain condition, which in a singular theory is coincidence of number of generalized momenta to the rank of the Hessian matrix. Non-canonical generalized velocities satisfy the system of linear algebraic equations, which sets the appropriate classification of singular theories (gauge and nongauge). To describe the time evolution of physical quantities we introduce a new anti-symmetric bracket (similar to the Poisson bracket). It is shown how the extension of the phase space leads to constraints, and the new bracket goes into the Dirac bracket. Quantization is briefly discussed.

Downloads

Download data is not yet available.

References

1. Weinberg S. The Quantum Theory of Fields. Vols. 1,2,3. - Cambridge: Cambridge University Press, 1995–2000.
2. Carinena J. F. Theory of singular Lagrangians // Fortsch. Physik. - 1990. - Vol. 38. - № 9. - P. 641–679.
3. Tulczyjew W. M. The Legendre transformation // Ann. Inst. Henri Poincar´e. - 1977. - Vol. A27. - № 1. - P. 101–114.
4. Tulczyjew W. M., Urba´nski P. A slow and careful Legendre transformation for singular Lagrangians // Acta Phys. Pol. - 1999. - Vol. B30. - № 10. - P. 2909–2977.
5. Menzo M. R., Tulczyjew W. M. Infinitesimal symplectic relations and generalized Hamiltonian dynamics // Ann. Inst. Henri Poincar´e. - 1978. - Vol. A4. - P. 349–367.
6. Marmo G., Mendella G., Tulczyjew W. Constrained Hamiltonian systems as implicit differential equations // J. Phys. - 1997. - Vol. A30. - P. 277–293.
7. Dirac P. A. M. Lectures on Quantum Mechanics. - New York: Yeshiva University, 1964.
8. Gitman D. M., Tyutin I. V. Canonical quantization of constrained fields. - M.: Nauka, 1986. - 216 p.
9. Henneaux M., Teitelboim C. Quantization of Gauge Systems. - Princeton: Princeton University Press, 1994. - 552 p.
10. Sundermeyer K. Constrained Dynamics. - Berlin: Springer-Verlag, 1982.
11. Regge T., Teitelboim C. Constrained Hamiltonian Systems. - Rome: Academia Nazionale dei Lincei, 1976.
12. Pons J. M. On Dirac’s incomplete analysis of gauge transformations // Stud. Hist. Philos. Mod. Phys. - 2005. - Vol. 36. - P. 491–518.
13. Miˇskovi´c O., Zanelli J. Dynamical structure of irregular constrained systems // J. Math. Phys. - 2003. - Vol. 44. - № 9. - P. 3876–3887.
14. Duplij S. Generalized duality, Hamiltonian formalism and new brackets // Kharkov, 2009. - 24 p. (Preprint Kharkov National University, arXiv:math-ph/1002.1565v5).
15. Duplij S. A new Hamiltonian formalism for singular Lagrangian theories // J. Kharkov National Univ., ser. Nuclei, Particles and Fields. - 2011. - Vol. 969. - № 3(51). - P. 34–39.
16. Arnold V. I. Mathematical methods of classical mechanics. - Berlin: Springer, 1989.
17. Nakamura T., Hamamoto S. Higher derivatives and canonical formalisms // Progr. Theor. Phys. - 1996. - Vol. 95. - № 3. - P. 469–484.
18. Andrzejewski K., Gonera J., Machalski P., Ma´slanka P. Modified Hamiltonian formalism for higher-derivative theories // Phys. Rev. - 2010. - Vol. D82. - P. 045008.
19. Lanczos C. The variational principles of mechanics. - Toronto: Univ. Toronto Press, second edition. - 1962. - 367 p.
20. Landau L. D., Lifshitz E. M. Mechanics. - Oxford: Pergamon Press, 1969. - 224 p.
21. Longhi G., Lusanna L., Pons J. M. On the many-time formulation of classical particle dynamics // J. Math. Phys. - 1989. - Vol. 30. - № 8. - P. 1893–1912.
22. Gogilidze S. A., Khvedelidze A. M., Pervushin V. N. On Abelianization of first class constraints // J. Math. Phys. - 1996. - Vol. 37. - № 4. - P. 1760–1771.
23. Loran F. Non-Abelianizable first class constraints // Commun. Math. Phys. - 2005. - Vol. 254. - P. 167––178.
Published
2013-06-01
Cited
How to Cite
Duplij, S. (2013). Partial Hamiltonian formalism, multi-time dynamics and singular theories. East European Journal of Physics, (1059(3), 10-21. Retrieved from https://periodicals.karazin.ua/eejp/article/view/12917