The theory of ultrasound doppler response spectral analysis under isometric muscle contraction

  • I. V. Skresanova The Kharkiv National University named V.N.Karazin
  • E. A. Barannik The Kharkiv National University named V.N.Karazin
Keywords: acoustic myography, sarcomere, Doppler spectrum, Spectral Tissue Doppler, spectrum of isometric contractions

Abstract

By means of the proposed ultrasound Spectral Tissue Doppler (STD) method, spectral characteristics of local isometric muscle contraction of skeletal muscle tissues were studied. The investigation of this method demonstrates its suitability for a more detailed spectral study of some features of biomechanical processes that have occurred under muscle contraction. The dynamic model of the muscle sarcomere movement that takes into account the viscous properties of muscle fibrils (ignoring their elastic properties) and the correlation between sarcomeres within the single myofibril. On the basis of the developed physical model, it is assumed that the mechanochemical characteristics of cross-bridges between actin and myosin filaments are the main factor having an influence upon the spectral peculiarities. Both the developed model of ultrasound Doppler response and the proposed dynamic model of the muscle sarcomere movement establish a link between the macroscopic measurements and the biomechanical processes and behavior of muscle sarcomeres at a microscopic level. The data obtained testify to the proposed ultrasound STD method as a reliable and valid diagnostic tool for diagnosing neuromuscular disorders.

Downloads

Download data is not yet available.

Author Biographies

I. V. Skresanova, The Kharkiv National University named V.N.Karazin

61108, Kharkiv, Kurchatov av., 31
E-mail: barannik@pht.univer.kharkov.ua

E. A. Barannik, The Kharkiv National University named V.N.Karazin

61108, Kharkiv, Kurchatov av., 31
E-mail: barannik@pht.univer.kharkov.ua

References

1. C. R. Hill, Physical Principles of Medical Ultrasonics, Second Edition, John Wiley & Sons, Chichester, 2004.

2. Grubb NR, Fleming A, Sutherland GR, Fox KA. Skeletal muscle contraction in healthy volunteers: assessment with Doppler tissue imaging. Radiology 1995;194:837-42.

3. Levinson SF, Kanai H, Hasegawa H. Doppler myography – detecting and imaging intrinsic muscle sounds. Proceedings of the Fourth International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity. Austin, Texas, USA 2005; 100.

4. Pulkovski N, Schenk P, Maffiuletti NA, Mannion AF. Tissue Doppler imaging for detecting onset of muscle activity. Muscle Nerve 2008;37:638-49.

5. Barry DT, Cole NM. Muscle sounds are emitted at the resonant frequencies of skeletal muscle. IEEE Trans Biomed Eng 1990;37(5):525-31.

6. Cole NM, Barry DT. Muscle sound frequencies of the frog are modulated by skeletal muscle tension. Biophys J 1994;66:1104-14.

7. Hemmerling TM, Michaud G, Babin D, Trager G, Donati F. Comparison of phonomyography with balloon pressure mechanomyography to measure contractile force at the corrugator supercilii muscle. Can J Anaesth 2004a;51(2):116-21.

8. Hemmerling TM, Michaud G, Trager G, Deschamps S, Babin D, Donati F. Phonomyography and mechanomyography can be used interchangeably to measure neuromuscular block at the adductor pollicis muscle. Anesth Analg 2004b;98(2):377-81.

9. Wells PN. Doppler studies of the vascular system. Eur J Ultrasound 1998;7:3-8.

10. Кanai H, Sato M, Koiwa Y, Chubachi N. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 1996;43:791-810.

11. Kanai H, Sugimura K, Koiwa Y, Tsukahara Y. Accuracy evaluation in ultrasonic-based measurement of microscopic change in thickness. Electronics Letters 1999;35:949-50.

12. Hasegawa H, Kanai H, Koiwa Y, Butler JP. Measurement of change in wall thickness of cylindrical shell due to cyclic remote actuation for assessment of viscoelasticity of arterial wall. Jpn J Appl Phys 2003;42(5):3255-61.

13. Ophir J, Alam SK, Garra BS, Krouskop T, Merritt CRB, Righetti R, Souchon R, Srinivasan S, Varghese T. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrasonics 2002;29(4):155-71.

14. Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am 2001;110(1):625-34.

15. Barannik EA, Girnyk SA, Tovstiak VV, Marusenko AI, Emelianov SY, Sarvazyan AP. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro. Ultrasonics 2002;40(1-8):849-52.

16. Barannik EA, Girnyk SA, Tovstiak VV, Marusenko AI, Volokhov VA, Sarvazyan AP, Emelianov SY. The influence of viscosity on the shear strain remotely induced by focused ultrasound in viscoelastic media. J Acoust Soc Am 2004;115:2358-64.

17. Rubin JM, Xie H, Kim K, Weitzel WF, Emelianov SY, Aglyamov SR, Wakefield TW, Urquhart AG, O'Donnell M. Sonographic elasticity imaging of acute and chronic deep venous thrombosis in humans. J Ultrasound Med 2006;25(9):1179-86.

18. Zhai L, Palmeri ML, Bouchard RR, Nightingale RW, Nightingale KR. An integrated indenter-ARFI imaging system for tissue stiffness quantification. Ultrason Imaging 2008;30:95-111.

19. Girnyk S, Barannik A, Barannik E, Tovstiak V, Marusenko A, Volokhov V. The estimation of elasticity and viscosity of soft tissues in vitro using the data of remote acoustic palpation. Ultrasound Med Biol 2006;32(2):211-9.

20. Girnyk SA, Barannik АE, Tovstiak VV, Tolstoluzhskiy DA, Barannik EA. Ultrasound Doppler monitoring of soft tissues in vitro and tissue phantoms heating and thermal destruction induced by acoustic remote palpation. Ultrasound Med Biol 2009;34(5):764-72.

21. Katsuyuki S, Kazuhiko K jr. Miosin V walks by lever action and Brownian motion. Science 2007;316:1208-12.

22. Reconditi M, Koubassova N, Linari M, Dobbie I, Narayanan T, Diat O, Piazzesi G, Lombardi V, Irving M. The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys J 2003;85:1098-110.

23. Piazzesi G, Reconditi M, Linari M, Lucii L, Sun YB, Narayanan T, Boesecke P, Lombardi V, Irving M. Mechanism of force generation by myosin heads in skeletal muscle. Nature 2002;415:659-62.

24. Kitamura K, Tokunaga M, Iwane AH, Yanagida T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometers. Nature 1999;397:129-34.

25. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of actin-myosin complex and its implications for muscle contraction. Science 1993a;261:58-65.

26. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. Three dimensional structure of myosin subfragment-1: a molecular motor. Science 1993b;261:50-8.

27. Э.И. Борзяк, Л.И. Волкова, Е.А. Добровольская и др. Анатомия человека: В двух томах. т.1. -М.: Медицина, 1996. -544 с.

28. Dickinson RJ, Nassiri DK. Reflection and scattering. In: Hill CR, Bamber JC, ter Haar GR, eds. Physical principles of medical ultrasonics. Second ed. Chichester: John Wiley & Sons, 2004. pp. 303-336.

29. Fish PJ. Doppler methods. In: Hill CR, ed. Physical principles of medical ultrasonics. Chichester: Ellis Horwood Limited, 1986. pp. 338-76.

30. Кулибаба А. А., Гирнык С.А., Толстолужский Д.А., Баранник Е.A. Доплеровская миография: локальная регистрация мышечной активности при статическом нагружении. // Біофізичний вісник – 2008. – Вип. 20(1). – С.79-87.

31. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 1957;7:255-318.

32. Hill TL, White JM. On the sliding-filament model of muscular contraction, IV. Calculation of the force-velocity curves. Proc Natl Acad Sci USA 1968;61(3):889-96.
Cited
How to Cite
Skresanova, I. V., & Barannik, E. A. (1). The theory of ultrasound doppler response spectral analysis under isometric muscle contraction. Biophysical Bulletin, 1(24). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/3985