Theoretical prediction of optimal rates for cell suspension cooling

  • L. G. Kuleshova Institute for Problems of Cryobiology and Cryomedicine of NASU
  • I. F. Kovalenko Institute for Problems of Cryobiology and Cryomedicine of NASU
Keywords: membrane, water transport, numerical modeling, optimal rates of cooling

Abstract

Using the method of numerical modeling of intracellular water loss kinetics and values of plasma membrane permeability coefficients for water molecules Lpg and cryoprotectant kpg in golden hamster kidney cells were obtained in the subzero temperature range in presence of 2.5 and 5% glycerol.

Downloads

Download data is not yet available.

Author Biographies

L. G. Kuleshova, Institute for Problems of Cryobiology and Cryomedicine of NASU

23 Pereyaslavskaya str., Kharkov, Ukraine 61015

I. F. Kovalenko, Institute for Problems of Cryobiology and Cryomedicine of NASU

23 Pereyaslavskaya str., Kharkov, Ukraine 61015

References

1. Грот С.П.. Мазур П. Неравновесная термодинамика: Пер. с англ.- М.: Мир. 1964.- 456с.

2. Mazur P. Freezing of living cells: mechanisms and implications // Am. J. Physiol. Cell Physiol. - 1984. -Vol.247, №3. - P. 125-142.

3. Lovelock J.E. Haemolysis of human red blood-cells by freezing and thawing // Biochim. Biophys. Acta. -
1953. - Vol. 10, №4. - P.414-426.

4. Mazur P.. Leibo S.P., Chu E.N.Y. A Two-factor hypothesis of freezing injury // Exp. Cell Res. - 1972. Vol.71, №2. - P.345-355.

5. Noiles E.E., Mazur P.. Watson P.F., Kleinhans F.W.. Critser J.K. Determination of water permeabilit; coefficient for human spermatozoa and its activation energy // Biol. Reprod. - 1993. - Vol.48. № 1. - P.99 - 109.

6. Curry M.R., Redding B.J., Watson P.F. Determination of water permeability coefficient and its activatio energy for rabbit spermatozoa // Cryobiology. - 1995. - Vol.32. №2. - P. 175-181.

7. Gilmore J.A.. McGann L.E.. Liu J.. Gao D.Y., Peter A.T., Kleinhans F.W., Critser J.K. Effect of cryoprotectant solutes on water permeability of human spermatozoa // Biol. Reprod. - 1995. - Vol.53. №5. P.985-995.

8. Willoughby C.E., Mazur P., Peter A.T., Critser J.K. Osmotic tolerance limits and properties of murine spermatozoa.- Biol. Reprod. - 1996. - Vol.55, №3. - P.715-727

9. Mc Grath J.J., Nowlen S., Ligon R. Experimental and analytical techniques for determining permeability parameters of individual cells and cell populations// Cryobiology. - 1983. - Vol.20. №6. - P.712.

10. Mc Grath J.J., Tu S.M., Sherban К., Melkerson M. A microscope diffusion device for the study of osmotic
phenomena in individual cells // Cryobiology. - 1985. - Vol.22, №6 - P.627-628.

11. Schreuders P.D., Aggarwal S.J., Diller K., Baxter C.R. A microscopic diffusion chamber for measure of the
osmotic properties of individual cells // Cryobiology. - 1987. - Vol.24, №6. - P.552-553.

12. Devireddy R.V., Swanlund D.J., Roberts K.P., Bischof J.C. Subzero water permeability parameters of mouse
spermatozoa in the presence of extracellular ice and cryoprotective agents // Biol. Reprod. - 1999. - Vol.61,
№3. - P.764-775.

13.Devireddy R.V., Swanlund D.J., Roberts K.P., Pryor J.L., Bischof J.C. The effect of extracellular ice and
cryoprotective agents on the water permeability parameters of human sperm plasma membrane during
freezing // Hum. Reprod.- 2000. - Vol. 15, №5. - P.1125-1135.

14.Curry M.R., Millar J.D., Watson P.F. Calculated optimal cooling rates for ram and human sperm cryopreservation fail to conform with empirical observations // Biol. Reprod. - 1994. - Vol.51, №5. -P.1014-1021.

15.Henry M.A., Noiles E.E., Gao D. et al. Cryopreservation of human spermatozoa. IV. The effects of cooling
rate and warming rate maintenance of motility, plasma membrane integrity, and mitochondrial function //
Fértil. Steril.- 1993. - Vol.60, №5. - P.911-918.

16.Sztein J.M., Farley J.S., Young A.F., Mobraaten L.E. Motility of cryopreserved mouse spermatozoa affected
by temperature of collection and rate of thawing // Cryobiology. - 1997. - Vol.35, №1. - P.46-52.

17.Songsasen N., Leibo S.P. Cryopreservation of mouse sperm. II. Relationship between survival after
cryopreservation and osmotic tolerance of spermatozoa from three strains of mice // Cryobiology. - 1997. -
Vol.35, №3. - P.255-269.

18. Thirumala S., Ferrer M.S., Al-Jarrah A., Eilts B.E., Paccamonti D.L., Devireddy R.V. Cryopreservation of canine spermatozoa: theoretical prediction of optimal cooling rates in the presence and absence of cryoprotective agents // Cryobiology. - 2003. - Vol.47, №2. - P. 109-124.

19.Yu I., Songsasen N., Godke R.A., Leibo S.P. Differenses among dog in responses of their spermatozoa cryopreserved at various cooling and warming rates // Cryobiology. - 2002. - Vol.44, №1. - P.57-72.

20.Devireddy R.V., Fahrig В., Godke R.A., Leibo S.P. Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates // Mol. Reprod. Dev. - 2004. - Vol.67,№4. - P.446-457.

21 .Fiser P.S., Fairfull R.V., Hansen C., Shrestha J.N.B., Underhill L. The effect of warming velocity on motility
and acrosomal integrity of boar sperm as influenced by the rate of freezing and glycerol level // Mol. Reprod. Dev. - 1993. - Vol.34, №2. - P. 190-195.

22. Кулешова Л.Г., Коваленко И.Ф. Определение транспортных характеристик плазматических мембран
клеток в условиях внеклеточной кристаллизации // Проблемы криобиологии. - 2006. -Т.16, №1. - С.З-12.

23.Kedem О., Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes // Biochim. Biophys. Acta. - 1958. - Vol.27, №2. - P .229-246.

24.Kedem O., Katchalsky A. A physical interpretation of the phenomenological coefficients of membrane permeability//J. Gen. Physiol. - 1961. - Vol.45, №2. - P. 143-179.

25. Гордиенко E.A., Пушкарь H.C. Физические основы низкотемпературного консервирования клеточных суспензий. - Киев: Наук, думка, 1994. - 143с.

26.McGrath J.J. Quantitative measurement of cell membrane transport: Technology and applications //
Cryobiology. - 1997. -Vol.34, №4 - P. 315-334.

27.Пушкарь H.C., Белоус A.M., Иткин Ю.А., Вишневский В.И., Розанов Л.Ф. Низкотемпературная кристаллизация в биологических системах.- Киев: Наук, думка, 1977. - 243с.

28.Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos // Cell. Biophys. - 1990. - Vol.17, №1. - P.53-92.

29. Thirumala S., Devireddy R.V. A simplified procedure to determine the optimal rate of freezing biological systems // J. Biomech. Eng. - 2005. - Vol.127, №2.-P.295-300.

30.Trad F.S., Toner M., Biggers J.D. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes // Hum. Reprod. - 1999. - Vol.14, №6. - P. 1569-1577.

31.Karlsson J.O.M., Cravalho E.G., Borel R.I.. Tompkins R.G., Yarmush M.L., Toner M. Nucleation and growth of ice
crystals inside cultured hepatocytes during freezing in the presence of dimethylsulfoxide // Biophys. J. - 1993. - Vol.65,
№6. - P.2524-2536.

32.Karlsson J.O.M.. Cravalho E.G., Toner M. A model of diffusion-limited ice growth inside biological cells during freezing// J. Appl. Phys. - 1994. - Vol.75, №9. - P.4442-4455.
Published
2008-09-29
Cited
How to Cite
Kuleshova, L. G., & Kovalenko, I. F. (2008). Theoretical prediction of optimal rates for cell suspension cooling. Biophysical Bulletin, 1(20), 56-64. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/1575
Section
Biophysics of complex systems