Водневий зв'язок і ДНК: 66-річна ретроспектива (в короткому викладі)

  • E. S. Kryachko Інститут теоретичної фізики ім. М.М. Боголюбова НАН України, вул. Метрологічна, 14-б, Київ, 03143 Україна https://orcid.org/0000-0002-8179-1849
Ключові слова: Ю.П. Благой, ДНК, водневий зв'язок, гідратація, мутація, перехід протона, напіввідкриття подвійної спіралі ДНК

Анотація

Актуальність. Як одного разу сказав Ю.П. Благой, пам'яті якого присвячується ця робота: «Молекулярна структура ДНК — знаменита подвійна спіраль — стабілізується молекулами води та іонами металів». Центральною, ключовою взаємодією, визначальною як для двухспіральної будови ДНК, так і її функціонування (генетичний код, реплікація, мутагенез), є воднево-зв'язана взаємодія.

Мета роботи. Демонстрація різноманітних проявів водневого зв'язку в структурі та функціонуванні ДНК.

Матеріали та методи. В роботі використане комп'ютерне моделювання, засноване на методі функціонала густини.

Результати. У роботі наведно широкий спектр воднево-зв'язаних взаємодій, що визначають ключові сторони як структури ДНК, так і ії функціональні особливості, які стосуються спадковості (реплікація, мутагенез).

Висновки. З одного боку, в напіввідкритих парах з вбудованою молекулою води на зовнішньому водневому зв'язку створюються більш сприятливі умови для переходів протонів по центральному водневому зв'язку між парами. В цьому випадку водневі зв'язки в меншій мірі перешкоджають переходу протона через менше електростатичне відштовхування (через більшу відстань) між ними. Тому напіввідкриті пари з більшою ймовірністю можуть служити джерелом утворення таутомерних форм нуклеїнових основ і обумовлювати ймовірний механізм утворення точкових мутацій в ДНК. При цьому, центральні водневі зв'язки за участю іміногрупи основ в парах залишаються неушкодженими.

Завантаження

Дані завантаження ще не доступні.

Посилання

Blagoi YP. DNA interaction with biologically active substances (metal ions, dyes, drugs). Soros Educational Journal. 1998;10:18–24. Available from: https://web.archive.org/web/20061209031559/http://journal.issep.rssi.ru/articles/pdf/9810_018.pdf (in Russian)

Karachevtsev VO, Kosevich MV, Zhigalova NM. In memory of Professor Yuri P. Blagoi. Bіophysical bulletin. 2018;39(1):81–2. https://doi.org/10.26565/2075-3810-2018-39-07 (in Ukrainian)

Watson JD, Crick FHC. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–8. https://doi.org/10.1038/171737a0

Chambers DA, editor. DNA: The Double Helix. Perspective and Prospective at 40 Years. Ann N Y Acad Sci. 1995;758:1–441. Available from: https://nyaspubs.onlinelibrary.wiley.com/toc/17496632/1995/758/1

Pearson H. Beyond the double helix. Nature. 2003;421:310–2. https://doi.org/10.1038/421310a

Gilbert W. Life after the helix. Nature. 2003;421:315–6. https://doi.org/10.1038/421315a

Dennis C, Campbell P. The eternal molecule. Nature. 2003;421:396. https://doi.org/10.1038/nature01396

Wilkins MHF, Stokes AR, Wilson HR. Molecular structure of nucleic acids: Molecular structure of deoxypentose nucleic acids. Nature. 1953;171:738–40. https://doi.org/10.1038/171738a0

Franklin RE, Gosling RG. Molecular configuration in sodium thymonucleate. Nature. 1953;171:740–41. https://doi.org/10.1038/171740a0

Olby R. Quiet debut for the double helix. Nature. 2003;421:402–5. https://doi.org/10.1038/nature01397

McCarty M. Discovering genes are made of DNA. Nature. 2003;421:406. https://doi.org/10.1038/nature01398

Maddox B. The double helix and the 'wronged heroine'. Nature. 2003;421:407–8. https://doi.org/10.1038/nature01399

Pääbo S. The mosaic that is our genome. Nature. 2003;421:409–12. https://doi.org/10.1038/nature01400

Chakravarti A., Little A. Nature, nurture and human disease. Nature. 2003;421:412–4. https://doi.org/10.1038/nature01401

Bell JI. The double helix in clinical practice. Nature. 2003;421:414–6. https://doi.org/10.1038/nature01402

Kemp M. The Mona Lisa of modern science. Nature. 2003;421:416–20. https://doi.org/10.1038/nature01403

Ball P. Portrait of a molecule. Nature. 2003;421(6921):421–2. https://doi.org/10.1038/nature01404

Bustamante C, Bryant Z, Smith SB. Ten years of tension: single-molecule DNA mechanics. Nature. 2003;421:423–7. https://doi.org/10.1038/nature01405

Seeman NC. DNA in a material world. Nature. 2003;421:427–31. https://doi.org/10.1038/nature01406

Alberts B. DNA replication and recombination. Nature. 2003;421:431–5. https://doi.org/10.1038/nature01407

Friedberg EC. DNA damage and repair. Nature. 2003;421:436–40. https://doi.org/10.1038/nature01408

Nossal GJV. The double helix and immunology. Nature. 2003;421:440–4. https://doi.org/10.1038/nature01409

Hood L, Galas D. The digital code of DNA. Nature. 2003;421:444–8. https://doi.org/10.1038/nature01410

Felsenfeld G, Groudine M. Controlling the double helix. Nature 2003;421:448–53. https://doi.org/10.1038/nature01411

Watson JD, Berry A. DNA: the Secret of Life. New York: Alfred A. Knopf; 2003. 446 p. ISBN: 0-375-41546-7.

Hovorun D. Gold anniversary of DNA double helix discovery. Biopolym Cell. 2003;19(3):209–10. https://doi.org/10.7124/bc.19.3 (in Ukrainian)

Blagoi YP, Galkin VL, Gladchenko GO, et al. Metallokompleksy nukleinovykh kislot v rastvorakh [Metal-containing complexes of nucleic acides in solutions]. Maleev V.Ya, editor. Kyiv: Naukova dumka; 1991. 270 p. ISBN 5-12-002499-0 (In Russian).

Jeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag; 1991. 569 p. https://doi.org/10.1007/978-3-642-85135-3

Moore TS, Winmill TF, CLXXVII. — The state of amines in aqueous solution. J Chem Soc, Trans. 1912;101:1635–76. https://doi.org/10.1039/CT9120101635

Huggins ML. 50 Years of Hydrogen Bond Theory. Angew Chem Int Ed. 1971;10:141–52. https://doi.org/10.1002/anie.197101471

Latimer WM, Rodebush WH. Polarity and ionization from the standpoint of the Lewis theory of valence. J Am Chem Soc. 1920;42(7):1419–33. https://doi.org/10.1021/ja01452a015

Pauling L. The shared-electron chemical bond. PNAS. 1928;14(4):359–62. https://doi.org/10.1073/pnas.14.4.359

Nernst W. Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum. Z Phys Chem. 1891;8(1):110–39. https://doi.org/10.1515/zpch-1891-0806 (in German)

Werner A. Über Haupt- und Nebenvalenzen und die Сonstitution der Ammoniumverbindungen. Justus Liebigs Annal Chem. 1902;322:261–97. https://doi.org/10.1002/jlac.19023220302 (in German)

Oddo G, Puxeddu E. Sui 5-azoeugenoli e la costituzione dei cosidetti o-ossiazocomposti. Gazz Chim Ital. 1906;36(II):1–48.

Pfeiffer P, Fischer Ph, Kuntner J, Monti P, Pros Z. Zur theorie der Farblacke, II. Justus Liebigs Annal Chem. 1913;398:137–96. https://doi.org/10.1002/jlac.19133980203

Yukhnevich G.V. Vodorodnaja svjaz' – chastnyj sluchaj gipervalentnoj svjazi M.A. Il'inskogo [Hydrogen bond is a particular case of hypervalent bond by M.A. Illinski]. Idlis GM, editor. Issledovanija po istorii fiziki i mehaniki [Studies in the history of physics and mechanics]. Moscow: Nauka; 2003. p. 220–36. ISBN: 5-02-002834-7 (in Russian).

Lewis GN. Valence and Structure of Atoms and Molecules. New York: The Chemical Catalog Company, Inc.: 1923. 172 p.

Pimentel GC, McClellan AL. The Hydrogen Bond. Moscow: Mir; 1964. 462 p. (in Russian).

International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology, Gold Book, Version 2.3.3, 2014-02-24. Available from: http://goldbook.iupac.org/files/pdf/goldbook.pdf

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem. 2011;83(8):1637–41. https://doi.org/10.1351/PAC-REC-10-01-02

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl Chem. 2011;83:1619–36. https://doi.org/10.1351/PAC-REP-10-01-01

Kryachko ES. The concept of protonation in examples: From atoms and molecules to Watson-Crick base pairs of DNA. In: Germogen A, editor. Protonation: properties, applications and effects. New York: Nova Science Publishers; 2019. p. 143–236. ISBN: 978-1-53614-886-2

Pauling L. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry. 3rd ed. New York: Cornell University Press; 1960. 644 p. ISBN-13: 978-0801403330

Kaplan I.G. Vvedenie v teoriiu mezhmolekuliarnykh vzaimodeistvii. [Introduction to the theory of intermolecular interactions]. Moscow: Nauka; 1982. 312 p. (in Russian)

Kryachko ES. Neutral blue-shifting and blue-shifted hydrogen bonds. In: Grabowski S, editor. Hydrogen Bonding — New Insights. Dordrecht: Springer; 2006. p. 293–336. https://doi.org/10.1007/978-1-4020-4853-1_8

Frank-Kamenetckii MD. Samaia glavnaia molekula [The most important molecule]. Moscow: Nauka; 1983. 160 p. (in Russian).

Sinden RR. DNA twists and flips. Nature. 2005;437:1097–8. https://doi.org/10.1038/4371097a

Volkov SN. The conformational dependence of low-frequency vibrations of DNA macromolecule. Biopolym Cell. 1991;7(1):40–9. https://doi.org/10.7124/bc.0002B0 (in Russian)

Watson JD, Crick FHC. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953;18:123–31. https://doi.org/10.1101/SQB.1953.018.01.020

Cochran W, Crick FHC, Vand V. The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Cryst. 1952;5:581–6. https://doi.org/10.1107/S0365110X52001635

Wilkins MHF, Wilson HR, Hamilton LD. Secondary structure of DNA. PNAS. 1970;65(3):761–2. https://doi.org/10.1073/pnas.65.3.761

Wu TT. Secondary structures of DNA. PNAS. 1969;63(2):400–5. https://doi.org/10.1073/pnas.63.2.400

Watson JD. The Double Helix. A Personal Account of the Discovery of the Structure of DNA. New York: Atheneum; 1968. 226 p.

Asimov A. Geneticheskii kod [The Genetic Code]. Moscow: Tcentropoligraf; 2006. 202 p. (in Russian). ISBN: 5-9524-2230-6

Elkin LO. Rosalind Franklin and the Double Helix. Physics Today. 2003;56(3):42–8. https://doi.org/10.1063/1.1570771

Manchester KL. Did a tragic accident delay the discovery of the double helical structure of DNA? Trends Biochem Sci. 1995;20(3):126–8. https://doi.org/10.1016/s0968-0004(00)88981-1

Kuhn TS. Struktura nauchnykh revoliutcii [The structure of scientific revolutions]. Moscow: Progress; 1977. 300 p. (in Russian).

Dufour F. The Realities of 'Reality' — Part II: Making Sense of Why Modern Science Advances (Volume 1). 2018. Chapter XI: The Molecular Biology Revolution; p. 204–18. Available from: https://ssrn.com/abstract=3251682

Hoshika S, Leal NA, Kim M-J, Kim M-S, Karalkar NB, Kim H-J, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. Science. 2019;363:884–7. https://doi.org/10.1126/science.aat0971

Warren M. Four new DNA letters double life’s alphabet. Nature. 2019;566:436. https://doi.org/10.1038/d41586-019-00650-8

Georgiadis MM, Singh I, Kellett WF, Hoshika S, Benner SA, Richards NGJ. Structural basis for a six nucleotide genetic alphabet. J Am Chem Soc. 2015;137(21):6947–55. https://doi.org/10.1021/jacs.5b03482

Kryachko ES. The origin of spontaneous point mutations in DNA via Löwdin mechanism of proton tunneling in DNA base pairs: Cure with covalent base pairing. Int J Quantum Chem. 2002;90(2):910–23. https://doi.org/10.1002/qua.975

Jeffrey GA. An Introduction to Hydrogen Bonding. New York: Oxford University Press; 1997. 320 p. ISBN 0-19-509549-9

Saenger W. The Principles of Nucleic Acid Structure. Мoscow: Мir; 1987. 584 p. (in Russian).

Sinden RR. DNA Structure and Function. Academic Press: San Diego; 1994. 398 p. ISBN: 9780126457506

Bulavin LA, Hovorun DM, Nikolaienko TYu. Structure of the monomers of DNA. Кyiv: Naukova Dumka; 2014. 205 p. https://doi.org/10.13140/2.1.2257.1208 (in Russian)

Sukhodub LF. Interactions and hydration of nucleic acid bases in a vacuum. Experimental study. Chem Rev. 1987;87(3):589–606. https://doi.org/10.1021/cr00079a006

Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study. J Am Chem Soc. 2004;126(32):10119–29. https://doi.org/10.1021/ja049155n

Kryachko ES, Volkov SN. To the understanding of the mechanism of formation of point mutations in DNA. Dopov Nac acad nauk Ukr. 2018;7:103–12. https://doi.org/10.15407/dopovidi2018.07.103 (in Ukrainian).

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, 2010. Available from: https://gaussian.com/

Hoogsteen K. The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Cryst. 1963;16:907–16. https://doi.org/10.1107/S0365110X63002437

Nikolova EN, Kim E, Wise AA, O'Brien PJ, Andricioaei I, Al-Hashimi HM. Transient Hoogsteen base pairs in canonical duplex DNA. Nature. 2011;470:498–502. https://doi.org/10.1038/nature09775

Frank-Kamenetskii MD. DNA breathes Hoogsteen. Artificial DNA: PNA & XNA. 2011;2(1):1–3. https://doi.org/10.4161/adna.2.1.15509

Subirana JA. DNA discoveries through crystallography. Nature. 2003;423(6941):683. https://doi.org/10.1038/423683b

Nikolova EN, Zhou H, Gottardo FL, Alvey HS, Kimsey IJ, Al-Hashimi HM. A historical account of Hoogsteen base-pairs in duplex DNA. Biopolymers. 2013;99:955–68. https://doi.org/10.1002/bip.22334

Ichas M. Biologicheskii kod [Biological code]. Moscow: Mir. 1971. 352 p. (in Russian)

Six thousand pet dogs help find mutation for one breed's striking blue eyes. Nature. 2018;562:310. https://doi.org/10.1038/d41586-018-06987-w

Deane-Coe PE, Chu ET, Slavney A, Boyko AR, Sams AJ. Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies, PLoS Genet. 2018;14(10), e1007648. https://doi.org/10.1371/journal.pgen.1007648

Lehninger AL. Biochemistry: The Molecular Basis of Cells Structure and Function. Moscow: Mir; 1976. 960 p. (in Russian).

Stent GS, Kjelindar R. Molekuliarnaia genetika [Molecular genetics]. Moscow: Mir; 1974. 614 p. (in Russian).

Korzhinskii S. Geterogenesis i evolyutsiya. K teorii proishozhdeniya vidov [Heterogenesis and evolution. On theory of the origin of species]. Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg. Série VIII. 1899;9(2):1–94. Available from: http://libarch.nmu.org.ua/bitstream/handle/GenofondUA/7317/4150d1dd5615e1288e0666d6427c6a47.djvu?sequence=1&isAllowed=y (in Russian).

Friz E. Molekuliarnyi mekhanizm mutatcii [Molecular mechanism of mutations] In: Belozerskii AN, editor. Molekuliarnaia genetika [Molecular genetics]. Part I. Moscow: Mir; 1964. p. 226–91. (in Russian)

De Friz G. Izbrannye proizvedeniia [Selected works]. Moscow: Gosudarstvennoe medicinskoe izdatel'stvo; 1932. 148 р. (in Russian). ISBN: 978-5-4458-1972-1

Chetverikov SS. O nekotorykh momentakh evoliutcionnogo protcessa s tochki zreniia sovremennoi genetiki [On some moments of evolutional process from the viewpoint of the modern genetics]. Biull. Moskovskogo obshchestva ispytatelei prirody. Otdel biologicheskii [Bull. Moskow Society of nature investigators. Biology department]. 1965;70(4). (in Russian)

Soifer V. Ochen lichnaia kniga. Vospominaniia o velikikh rossiiskikh uchenykh Sergee Chetverikove i Nikolae Timofeeve-Resovskom [A very private book. Memoirs on the great Russian scientists S. Chetverikov and Nikolai Timofeev-Resovski.]. Novyi Mir. 2009;3. (in Russian). Available from: https://magazines.gorky.media/novyi_mi/2009/3/ochen-lichnaya-kniga.html

Danilov VI, Kventcel GF. Elektronnye predstavleniia v teorii tochechnykh mutatcii [Electronic representations in point mutation theory]. Kyiv: Naukova dumka; 1971. 84 p. (in Russian)

Meselson M, Stahl FW. The replication of DNA in Escherichia coli. PNAS. 1958;44(7):671–82. https://doi.org/10.1073/pnas.44.7.671

Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. DNA repair and mutagenesis. 2nd ed. Washington: ASM Press; 2006. Part 3, DNA damage tolerance and mutagenesis. p. 461-750. https://doi.org/10.1128/9781555816704

Jonczyk P, Fijalkowska I, Ciesla Z. Overproduction of the subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. PNAS. 1988;85(23):9124–7. https://doi.org/10.1073/pnas.85.23.9124

Nee S. Deleterious mutation and genetic recombination. Nature. 1988;331:308. https://doi.org/10.1038/331308a0

Timoféeff-Ressovsky NW, Zimmer KG, Delbrück M. Über die Natur der Genmutation und der Genstruktur. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen (VI). 1935;1:189–245. Available from: https://www.ini.uzh.ch/~tobi/fun/max/timofeeffZimmerDelbruck1935.pdf

Schrödinger E. What is life? The Physical Aspect of the Living Cell. Cambridge University Press; 1944. 194 p.

Fischer EP. Max Delbrück. Genetics. 2007;177(2):673–6. Available from: https://www.genetics.org/content/177/2/673.article-info

Bohr N. Light and Life. Nature. 1933;131:421–3. https://doi.org/10.1038/131421a0

Fischer EP, Lipson CP. Thinking About Science: Max Delbrück and the Origin of Molecular Biology. New York: W.W. Norton & Co Inc. 1988. 334 p. ISBN: 978-0393025088

Bohr N. Licht und Leben-noch einmal. Naturwissenschaften. 1963;50:725–7. https://doi.org/10.1007/BF00627713 (in German)

Topal MD, Fresco JR. Complementary base pairing and the origin of substitution mutations. Nature. 1976;263:285–9. https://doi.org/10.1038/263285a0

Goodman MF. Mutations caught in the act. Nature. 1995;378:237–8. https://doi.org/10.1038/378237a0

Brovarets' OO, Hovorun DM. Tautomeric transition between wobble A∙C DNA base mispair and Watson-Crick-like A∙C* mismatch: microstructural mechanism and biological significance. Phys Chem Chem Phys. 2015;17:15103–10. https://doi.org/10.1039/c5cp01568e

Freese EB. On the molecular explanation of spontaneous and induced mutations. Brookhaven Symp Biol. 1959;12:63–75.

Pullman B, Pullman A. Electronic aspects of purine tautomerism. Adv Heterocycl Chem. 1971;13:77–159. https://doi.org/10.1016/S0065-2725(08)60349-9

Kwiatkowski JS, Pullman B. Tautomerism and electronic structure of biological pyrimidines. Adv Heterocycl Chem. 1975;18:199–335. https://doi.org/10.1016/S0065-2725(08)60131-2

Colominas C, Luque FJ, Orozco M. Tautomerism and protonation of guanine and cytosine. Implications in the formation of hydrogen-bonded complexes. J Am Chem Soc. 1996;118(29):6811–21. https://doi.org/10.1021/ja954293l

Clementi E. Structure of water and counter ions for nucleic acids in solution. In: Clementi E, Sarma RH, editors. Structure and Dynamics: Nucleic Acids and Proteins. N.Y.: Academic Press; 1983. p. 321–64.

Masoodi HR, Bagheri S, Abareghi M. The effects of tautomerization and protonation on the adenine–cytosine mismatches: a density functional theory study. J Biomol Struct Dyn. 2016;34(6):1143–55. https://doi.org/10.1080/07391102.2015.1072734

Löwdin P-O. Proton tunneling in DNA and its biological implications. Rev Mod Phys. 1963;35:724. https://doi.org/10.1103/RevModPhys.35.724

Löwdin P-O. Effect of Proton Tunnelling in DNA on Genetic Information and Problems of Mutations, Aging, and Tumors. Biopolymers Symp. 1964;1:161–81.

Brovarets' ОО, Hovorun DN. How stable are the mutagenic tautomers of DNA bases? Biopolym Cell. 2010;26(1):72–6. https://doi.org/10.7124/bc.000147 (in Ukrainian).

Löwdin P-O. The mathematical definition of a molecule and molecular structure. In: Maruani J, editor. Molecules in physics, chemistry, and biology. Physical aspects of molecular systems. Volume 2. Dordrecht: Springer; 1988. p. 3–60. https://doi.org/10.1007/978-94-009-2851-0

Löwdin P-O. On nuclear motion and the definition of molecular structure. J Mol Struct: THEOCHEM. 1991;230:13–5. https://doi.org/10.1016/0166-1280(91)85169-8

McNaught AD, Wilkinson A. IUPAC Compendium of Chemical Terminology (the "Gold Book"). 2nd ed. Oxford: Blackwell Scientific Publications; 1997. Available from: http://goldbook.iupac.org

Brovarets' OO, Hovorun DM. Proton tunnelling in the AT Watson-Crick DNA base pair: myth or reality? J Biomol Struct Dyn. 2015;33:2716–20. https://doi.org/10.1080/07391102.2015.1092886

Godbeer AD, Al-Khalili JS, Stevenson PD. Modelling proton tunnelling in the adenine-thymine base pair. Phys Chem Chem Phys. 2015;17:13034–44. https://doi.org/10.1039/C5CP00472A

Florián J, Hrouda V, Hobza V. Proton transfer in the adenine-thymine base pair. J Am Chem Soc. 1994;116(4):1457–60. https://doi.org/10.1021/ja00083a034

Platt JR. Chemical aspects of genetics. Annu Rev Phys Chem. 1965;16:503–24. https://doi.org/10.1146/annurev.pc.16.100165.002443

Löwdin P-O. Some Properties of the Hydrogen Bonds in Biochemistry with Particular Reference to the Stability of the Genetic Code. Pontificiae Academiae Scientiarum. Scripta Varia. Semaine d'Etude sur les Forces Moléculaires, 18-23 avril 1966. 1967 ;31:637–708.

Frank-Kamenetskii MD. Fluktuatcionnaia podvizhnost DNK [Fluctuation mobility of DNA]. Mol Biol. (Moscow). 1983;17:639–52. (in Russian)

Frank-Kamenetskii MD, Prakash S. Fluctuations in the DNA double helix: A critical review. Phys Life Rev. 2014;11(2):153–70. https://doi.org/10.1016/j.plrev.2014.01.005

Jacobson B. Hydration structure of deoxyribonucleic acid and its physico-chemical properties. Nature. 1953;172:666–7. https://doi.org/10.1038/172666a0

Semenov MA, Maleev VYa. Energetika gidratatcii DNK [Energetics of DNA hydration]. Biophysics (Russian). 1986; 31(5):764–71. (in Russian)

Maleev VYa, Semenov MA, Gasan AI. Energeticheskie aspekty gidratatcii DNK [Energetic aspects of the hydration of DNA]. In: Ravnovesnaia dinamika struktury biopolimerov [Equilibrium dynamics of biopolymers' structure]. Pushhino; 1990. (in Russian)

Yanson IK, Teplitsky AB, Sukhodub LF. Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers. 1979;18(5):1149–70. https://doi.org/10.1002/bip.1979.360180510

Verkin BI, Yanson IK, Sukhodub LF. Vzaimodeistviia biomolekul: Novye eksperimentalnye podkhody i metody [The interactions of biomolecules: New experimental approaches and methods]. Kyiv: Naukova Dumka; 1985. 164 p. (in Russian)

Perepelytsya SM. Dynamical ordering of metal ions around DNA double helix. Visn Nac Akad Nauk Ukr. 2014;1:89–95. (In Ukrainian). https://doi.org/10.15407/visn2014.01.089

Eisenberg B. Computing the field in proteins and channels. J Membrane Biol. 1996;150:1–25. https://doi.org/10.1007/s002329900026

Goldblum A, Perahia D, Pullman A. Hydration scheme of the complementary base-pairs of DNA, FEBS Lett. 1978;91(2):213–5. https://doi.org/10.1016/0014-5793(78)81175-2

Clementi E, Corongiu G. A theoretical study of the water structure for nucleic acids bases and base pairs in solution at T=300K. J Chem Phys. 1980;72(7):3979–92. https://doi.org/10.1063/1.439676

Clementi E. Structure of water and counterions for nucleic acids in solution. In: Clementi E, Sarma RH, editors. Structure and Dynamics: Nucleic Acids and Proteins. New York: Adenine Press; 1983. p. 321–64.

Kabeláč M, Zendlova L, Řeha D, Hobza P. Potential energy surfaces of an adenine-thymine base pair and its methylated analogue in the presence of one and two water molecules: Molecular mechanics and correlated ab initio study. J Phys Chem B. 2005;109(24):12206–13. https://doi.org/10.1021/jp045970d

Poltev VI, Gonzalez EH, Teplukhin AV. Possible role of rare tautomers of DNA bases in mutagenesis: Evaluation of hydration effect on tautomeric equilibrium by Monte Carlo simulation. Mol Biol. (Moscow). 1995;29(2): 213–9.

Danilov VI, Dailidonis VV, Mourik T, Fruchtl HA. A study of nucleic acid base-stacking by the Monte Carlo method: Extended cluster approach. Cent Eur J Chem. 2011;9(4):720–7. https://doi.org/10.2478/s11532-011-0056-0

Kryachko ES, Volkov SN. Preopened states of DNA base pair. Physics of the Alive. 2000;7(2):118–24.

Kryachko ES, Volkov SN. Preopening of the DNA base pairs. Int J Quantum Chem. 2001;82:193–204. https://doi.org/10.1002/qua.1040

Giudice E, Várnai P, Lavery R. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucl Acids Res. 2003;31(5):1434–43. https://doi.org/10.1093/nar/gkg239

van Aalten DMF, Erlanson DA, Verdine GL, Joshua-Tor L. A structural snapshot of base-pair opening in DNA. PNAS. 1999;96(21):11809–14. https://doi.org/10.1073/pnas.96.21.11809

Diekmann S. Definitions and nomenclature of nucleic acid structure parameters. J Mol Biol. 1989;205(4):787–91. https://doi.org/10.1016/0022-2836(89)90324-0

Jaroff I. The gene hunt. Time. 1989;133(12):62–7.

Опубліковано
2020-09-15
Цитовано
0 статей
Як цитувати
Kryachko, E. (2020). Водневий зв’язок і ДНК: 66-річна ретроспектива (в короткому викладі). Біофізичний вісник, (43), 148-173. https://doi.org/10.26565/2075-3810-2019-43-15
Розділ
Дискусійні матеріали