Expression of β-III-tubulin in the neonatal adrenal cell culture: comparison of monolayer and 3D-culture

  • K. Plaksina Institute for Problems of Cryobiology and Cryomedicine of the NASU, Pereyaslavskaya Str., 23, Kharkiv, 61015, Ukraine, ekarinamih@gmail.com
  • O. Sidorenko Institute for Problems of Cryobiology and Cryomedicine of the NASU, Pereyaslavskaya Str., 23, Kharkiv, 61015, Ukraine, lesunec@gmail.com
  • Y. Legach Institute for Problems of Cryobiology and Cryomedicine of the NASU, Pereyaslavskaya Str., 23, Kharkiv, 61015, Ukraine, evlegach@gmail.com
  • I. Kovalenko Institute for Problems of Cryobiology and Cryomedicine of the NASU, Pereyaslavskaya Str., 23, Kharkiv, 61015, Ukraine, i.kovalenko.ipcic@gmail.com
  • G. Bozhok Institute for Problems of Cryobiology and Cryomedicine of the NASU, Pereyaslavskaya Str., 23, Kharkiv, 61015, Ukraine, bozhokgaru@gmail.com
Keywords: adrenal cell culture, monolayer culture, 3D-culture, cytospheres, spheroids, β-III-tubulin, neuroblasts

Abstract

Some morphofunctional features of newborn piglets adrenal cell cultures obtained on the surfaces with different degrees of adhesiveness have been studied. It has been shown that during cultivation on adhesive surfaces a monolayer of fibroblast-like cells is formed (monolayer culture). When cultivated on a low-adhesive surface, the cells are assembled into three-dimensional spheroids that are in a floating state (3D culture). On adhesive surfaces, attached spheroids are eventually formed on the monolayer of fibroblast-like cells. When attached or floating spheroids are transferred to an adhesive surface migration of two morphological types of cells is observed – fibroblast-like and neuroblast-like cells. Immunocytochemical staining of neuroblasts, which migrate from both types of spheroids, showed the expression of neuronal marker β-III-tubulin. The number of fibroblast-like cells migrating from floating spheroids that were transferred to adhesive conditions is inversely proportional to the duration of the preliminary 3D culture. This approach allows obtaining a "pure" neuroblasts culture, which is uncontaminated by fibroblasts.

Downloads

Download data is not yet available.

References

Антоневич Н.Г., Квачева З.Б., Чекан В.Л. и др. Стволовые и прогениторные клетки обонятельной выстилки человека: условия выделения и накопления в культуре, морфофункциональная и фенотипическая характеристика // Клеточные культуры. Информационный бюллетень. – 2012. – Вып.28. – С. 27–36. /Antonevich N.G., Kvacheva Z.B., Chekan V.L. i dr. Stvolovyye i progenitornyye kletki obonyatel'noy vystilki cheloveka: usloviya vydeleniya i nakopleniya v kul'ture, morfofunktsional'naya i fenotipicheskaya kharakteristika // Kletochnyye kul'tury. Informatsionnyy byulleten'. – 2012. – Vyp.28. – S. 27–36./

Малюгин Б.Э., Борзенок С.А., Сабурина И.Н. и др. Разработка биоинженерной конструкции искусственной роговицы на основе пленочного матрикса из спидроина и культивированных клеток лимбальной зоны глазного яблока // Офтальмохирургия. – 2013. – Вып.4. – С. 89–97. /Malyugin B.E., Borzenok S.A., Saburina I.N. i dr. Razrabotka bioinzhenernoy konstruktsii iskusstvennoy rogovitsy na osnove plenochnogo matriksa iz spidroina i kul'tivirovannykh kletok limbal'noy zony glaznogo yabloka // Oftal'mokhirurgiya. – 2013. – Vyp.4. – S. 89–97./

Петренко А.Ю., Хунов Ю.А., Иванов Э.Н. Стволовые клетки. Свойства и перспективы клинического применения: монография. – Л.: Пресс-экспресс, 2011. – 368с./Petrenko A.Yu., Khunov Yu.A., Ivanov E.N. Stvolovyye kletki. Svoystva i perspektivy klinicheskogo primeneniya: monografiya. – L.: Press-ekspress, 2011. – 368s./

Репин В.С., Ржанинова А.А., Шаменков Д.А. Эмбриональные стволовые клетки: фундаментальная биология и медицина. – М.: Реметэкс, 2002. – 176с. /Repin V.S., Rzhaninova A.A., Shamenkov D.A. Embrional'nyye stvolovyye kletki: fundamental'naya biologiya i meditsina. – M.: Remeteks, 2002. – 176s./

Сидоренко О.С., Божок Г.А., Легач Е.И., Бондаренко Т.П. Формирование цитосфер и нейрональная дифференцировка в культуре клеток надпочечников новорожденных поросят // Проблемы криобиологии и криомедицины. – 2013. – Т.23, №4. – С. 359–362. /Sidorenko O.S., Bozhok G.A., Legach Ye.I., Bondarenko T.P. Formirovaniye tsitosfer i neyronal'naya differentsirovka v kul'ture kletok nadpochechnikov novorozhdennykh porosyat // Problemy kriobiologii i kriomeditsiny. – 2013. – T.23, №4. – S. 359–362./

Сосунов А.А. Нервный гребень и его нейральные производные // Соросовский образовательный журнал: Биология. – 1999. – №5. – С. 14–21./Sosunov A.A. Nervnyy greben' i ego neyral'nyye proizvodnyye // Sorosovskiy obrazovatel'nyy zhurnal: Biologiya. – 1999. – №5. – S. 14–21./

Сукач А.Н., Ляшенко Т.Д. Роль формирования агрегатов в процессе выживания изолированных нервных клеток новорожденных крыс после криоконсервирования // Проблемы криобиологии. – 2011. – Т.21, №4. – С. 395–405. /Sukach A.N., Lyashenko T.D. Rol' formirovaniya agregatov v protsesse vyzhivaniya izolirovannykh nervnykh kletok novorozhdennykh krys posle kriokonservirovaniya // Problemy kriobiologii. – 2011. – T.21, №4. – S. 395–405./

Терских В., Васильев A. Стволовые клетки (обзор) // Эстетическая медицина. – 2004. – Т.3, №4. – С. 324–335. /Terskikh V., Vasil'yev A. Stvolovyye kletki (obzor) // Esteticheskaya meditsina. – 2004. – T.3, №4. – S. 324–335./

Agley C.C., Rowlerson A.M., Velloso C.P. et al. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle // J. Vis. Exp. – 2015. – Vol.95. – e52049.

Ahmed S. The culture of neural stem cells // J. Cell Biochem. – 2009. – Vol.106, no 1. – P. 1–6.

Bes J.C., Sagen J. Dissociated human embryonic and fetal adrenal glands in neural stem cell culture system: open fate for neuronal, nonneuronal, and chromaffin lineages? // Ann. N.Y. Acad. Sci. – 2002. – Vol.971. – P. 563–572.

Bozhok G.A., Sidorenko O.S., Plaksina E.M. et al. Neural differentiation potential of sympathoadrenal progenitors derived from fresh and cryopreserved neonatal porcine adrenal glands // Cryobiology. – 2016. – Vol.73, no 2. – P. 152–161.

Byun Y.S., Tibrewal S., Kim E. et al. Keratocytes derived from spheroid culture of corneal stromal cells resemble tissue resident keratocytes // PLoS One. – 2014. – Vol.9, no 11. – e112781.

Carlsson J., Yuhas J.M. Liquid-overlay culture of cellular spheroids // Recent Results Cancer Res. – 1984. – Vol.95. – P. 1–23.

Chen L.L., Mann E., Greenberg B. et al. Removal of fibroblasts from primary cultures of squamous cell carcinoma of the head and neck // Journal of Tissue Culture Methods. – 1993. – Vol.15, no 1. – P. 1–9.

Chung K., Sicard F., Vukicevic V. et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla // Stem cells. – 2009. – Vol.27, no 10. – P. 2602–2613.

Dalby M.J., Riehle M.O., Johnstone H.J. et al. Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features // J. Biomed. Mater. Re. A. – 2003. – Vol.67, no 3. – P. 1025–1032.

Friedrich J., Seidel C., Ebner R., Kunz-Schughart L.A. Spheroid-based drug screen: considerations and practical approach // Nat. Protoc. – 2009. – Vol.4, no 3. – P. 309–324.

Gong S., Miao Y.L., Jiao G.Z. et al. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice // PLoS One. – 2015. – Vol.10, no 2. – e0117503.

Gong X., Lin C., Cheng J. et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing // PLoS One. – 2015. – Vol.10, no 6. – e0130348.

Hammarback J.A., Palm S.L., Furcht L.T., Letourneau P.C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin // Journal of Neuroscience Research. – 1985. – Vol.13, no 1–2. – P. 213–220.

Hervonen A., Hervonen H., Rechardt L. Axonal growth from the primitive sympathetic elements of human fetal adrenal medulla // Experientia. – 1972. – Vol.28, no 2. – P. 178–179.

Ivascu A., Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis // J. Biomol. Screen. – 2006. – Vol.11, no 8. – P. 922–932.

Jin Y.Q., Liu W., Hong T.H., Cao Y. Efficient Schwann cell purification by differential cell detachment using multiplex collagenase treatment // J. Neurosci. Methods. – 2008. – Vol.170, no 1. – P. 140–148.

Kaewkhaw R., Scutt A.M., Haycock J.W. Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue // Nat. Protoc. – 2012. – Vol.7, no 11. – P. 1996–2004.

Kinney M.A., Hookway T.A., Wang Y., McDevitt T.C. Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics // Ann. Biomed. Eng. – 2014. – Vol.42, no 2. – P. 352–367.

Kisselbach L., Merges M., Bossie A., Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures // Cytotechnology. – 2009. – Vol.59, no 1. – P. 31–44.

Knight E., Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro // J. Anat. – 2015. – Vol.227, no 6. – P. 746–756.

Kulkarni G.V., McCulloch C.A. Serum deprivation induces apoptotic cell death in a subset of Balb/c 3T3 fibroblasts // Journal of Cell Science. – 1994. – Vol.107. – P. 1169–1179.

Kuzmuk K., Schook L. Pigs as a model for biomedical sciences // The Genetics of the pig, second ed. / Eds. M.F.Rothschild, A.Ruvinsky. – CAB International, 2011. – P. 426–444.

Li H., Dai Y., Shu J. et al. Spheroid cultures promote the stemness of corneal stromal cells // Tissue Cell. – 2015. – Vol.47, no 1. – P. 39–48.

Lumb R., Schwarz Q. Sympathoadrenal neural crest cells: the known, unknown and forgotten? // Dev. Growth Differ. – 2015. – Vol.57, no 2. – P. 146–157.

Morimoto Y., Hsiao A.Y., Takeuchi S. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly // Adv. Drug. Deliv. Rev. – 2015. – Vol.95. – P. 29–39.

Niapour A., Karamali F., Karbalaie K. et al. Novel method to obtain highly enriched cultures of adult rat Schwann cells // Biotechnol. Lett. – 2010. – Vol.32, no 6. – P. 781–786.

Nyberg S.L., Hardin J., Amiot B. et al. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver // Liver Transpl. – 2005. – Vol.11, no 8. – P. 901–910.

Park A.M., Hayakawa S., Honda E. et al. Conditioned media from lung cancer cell line A549 and PC9 inactivate pulmonary fibroblasts by regulating protein phosphorylation // Arch. Biochem. Biophys. – 2012. – Vol.518, no 2. – P. 133–141.

Pastrana E., Silva-Vargas V., Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells // Cell Stem Cell. – 2011. – Vol.8, no 5. – P. 486–498.

Pilling D., Gomer R.H. Differentiation of circulating monocytes into fibroblast-like cells // Methods Mol Biol. – 2012. – Vol.904. – P. 191–206.

Ramgolam K., Lauriol J., Lalou C. et al. Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function // PLoS One. – 2011. – Vol.6, no 4. – e18784.

Santana M., Chung K., Vukicevic V. et al. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla // Stem Cells Transl. Med. – 2012. – Vol.1. – P. 783–791.

Saxena Sh., Wahl J., Huber-Lang M.S. et al. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands // PLoS One. – 2013. – Vol.8, no 5. – e64454.

Sidorenko O.S., Bozhok G.A., Legach E.I., Bondarenko T.P. Morphological and functional features of newborn piglets adrenal cells during culturing // Eastern European Scientific Journal. – 2014. – No 2. – Р. 11–19.

Sincennes M.C., Wang Y.X., Rudnicki M.A. Primary mouse myoblast purification using magnetic cell separation // Methods Mol. Biol. – 2017. – Vol.1556. – P. 41–50.

Song H., David O., Clejan S. et al. Spatial composition of prostate cancer spheroids in mixed and static cultures // Tissue Eng. – 2004. – Vol.10, no 7–8. – P. 1266–1276.

Svendsen C.N., Bhattacharyya A., Tai Y.T. Neurons from stem cells: preventing an identity crisis // Nat. Rev. Neurosci. – 2001. – Vol.2, no 11. – P. 831–834.

Vizzardelli C., Potter E., Berney T. et al. Automated method for isolation of adrenal medullary chromaffin cells from neonatal porcine glands // Cell. Transpl. – 2001. – Vol.10, no 8. – P. 689–696.

Wang Q.R., Wang B.H., Huang Y.H. et al. Purification and growth of endothelial progenitor cells from murine bone marrow mononuclear cells // J. Cell Biochem. – 2008. – Vol.103, no 1. – P. 21–29.

Wei Y., Zhou J., Zheng Z. et al. An improved method for isolating Schwann cells from postnatal rat sciatic nerves // Cell Tissue Res. – 2009. – Vol.337, no 3. – P. 361–369.

Zhou H., Aziza J., Sol J. et al. Cell therapy of pain: characterization of human fetal chromaffin cells at early adrenal medulla development // Exp. Neurol. – 2006. – Vol.198, no 2. – P. 370–381.
Cited
How to Cite
Plaksina, K., Sidorenko, O., Legach, Y., Kovalenko, I., & Bozhok, G. (1). Expression of β-III-tubulin in the neonatal adrenal cell culture: comparison of monolayer and 3D-culture. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 28, 76-86. https://doi.org/10.26565/2075-5457-2017-28-9
Section
CELL BIOLOGY