Variability of Drosophila melanogaster radius incompletus trait expressivity under the food fortification by folate-methionine cycle metabolites
Abstract
The aim of study was to determine how the excess of certain (key) metabolites of folate-methionine cycle (folic acid, methionine, betaine) in the diet affects Drosophila melanogaster radius incompletus trait expressivity. Folate metabolism is a supplier of one-carbon chemical groups to the number of vital cell processes (purine nucleotides biosynthesis, methionine regeneration, DNA, RNA and proteins methylation) and, therefore, it is directly related to the gene activity regulation. This prompted the supplements choice for study. For the experiment we used D. melanogaster stock with radius incompletus (ri) gene mutation. The expressivity of radius incompletus trait appeared to be a convenient model with well-studied genetic control to evaluate the effect of various factors. It has been established that an excess of folic acid, betaine or methionine in culture medium affects D. melanogaster radius incompletus trait expressivity. The direction and strength of effect depend on the sex of individual developed in the medium with one of mentioned supplements. Females appeared to be more sensitive. Each of the dietary supplements used was characterized by a specific effect on studied trait expressivity: under betaine influence we observed a significant decrease in the trait expression in females but not in males; under folic acid action sex-specific differences stayed stable; development in the medium with methionine excess resulted in a decrease of the studied index mean values with an increase of the individuals’ variability. Evaluation in terms of fluctuating asymmetry proved more stable development of males in changing conditions, as compared to females.
Downloads
References
Affleck J.G., Neumann K., Wong L., Walker V.K. The effects of methotrexate on Drosophila development, female fecundity, and gene expression // Toxicol. Sci. – 2006. – Vol.89, Iss. 2. – P. 495–503.
Averous J., Bruhat A., Mordier S., Fafournoux P. Recent advances in the understanding of amino acid regulation of gene expression // J. Nutr. – 2003. – Vol.133. – P. 2040S–2045S.
Bruhat A., Fafournoux P. Recent advances on molecular mechanisms involved in amino acid control of gene expression // Curr. Opin. Clin. Nutr. Metab. Care. – 2001. – Vol.4. – P. 439–443.
Craig S. Betaine in human nutrition // Am. J. Clin. Nutr. – 2004. – Vol. 80, no 3. – P. 539–549.
Davis C.D., Uthus E.O. DNA methylation, cancer susceptibility, and nutrient interactions // Experimental biology and medicine. – 2004. – Vol.229, no 10. – С. 988–995.
De Caterina R., Madonna R. Nutrients and gene expression / in Nutrigenetics and nutrigenomics / eds. A.P.Simpopoulos, M.J.Ordovas. – 2004. – Vol.93. – P. 99–133.
Douglas A.E., Minto L.B., Wilkinson T.L. Quantifying nutrient production by the microbial symbionts in an aphid // J. Exp. Biol. – 2001. – Vol.204. – P. 349–358.
Duplus E., Glorian M., Forest C. Fatty acid regulation of gene transcription // J. Biol. Chem. – 2000. – Vol.275. – P. 30749–30752.
Dutta S., Sinha S., Chattopadhyay A. et al. Cystathionine beta-synthase T833C/844INS68 polymorphism: a family-based study on mentally retarded children // Behav. Brain Funct. – 2005. – Vol.1. – 25p. (http://behavioralandbrainfunctions.biomedcentral.com/articles/10.1186/1744-9081-1-25)
Ehrlich M. DNA methylation in cancer: too much, but also too little // Oncogene. – 2002. – Vol.21, no 35. – P. 5400–5413.
England J.C., Perchuk B.S., Laub M.T., Gober J.W. Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability // J. Bacteriol. – 2010. – Vol.192, iss.3. – P. 819–833.
Fafournoux P., Bruhat A., Jousse C. Amino acid regulation of gene expression // Biochem. J. – 2000. – Vol.351. – P. 1–12.
Fetisova I.N., Dobrolyubov A.S., Lipin M.A., Polyakov A.V. The polymorphism of folate metabolism genes and human diseases // The Journal of New Medical Technologies. – 2007. – Vol.10, no 1. – P. 12–17. (in Russian)
Firso F., Choi S.-W. Gene-nutrient interactions in one-carbon metabolism // Current Drug Metabolism. – 2005. – Vol.6. – P. 37–46.
Foufelle F., Girard J., Ferre P. Glucose regulation of gene expression // Curr. Opin. Clin. Nutr. Metab. Care. – 1998. – Vol.1. – P. 323–328.
Geer B.W. A ribonucleic acid-protein relationship in Drosophila nutrition // J. Exp. Zool. – 1963. – Vol.154. – P. 353–364.
Graham J.H., Raz S., Hel-Or H., Nevo E. Fluctuating asymmetry: methods, theory, and applications // Symmetry. – 2010. – Vol.2. – P. 466–540.
Grandison R.C., Piper M.D.W., Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila // Nature. – 2009. – Vol.462. – P. 1061–1064.
Grimaldi P.A. Fatty acid regulation of gene expression // Curr.Opin. Clin. Nutr. Metab. Care. – 2001. – Vol.4. – P. 433–437.
Golberg L., de Meillon B., Lavoipierre M. The nutrition of the larva of Aedes aegypti L. II. Essential watersoluable factors from yeast // J. Exp. Biol. – 1945. – Vol.21. – P. 90–96.
Kilberg M.S., Barbosa-Tessmann I.P. Genomic sequences necessary for transcriptional activation by amino acid deprivation of mammalian cells // J. Nutr. – 2002. – Vol.132. – P. 1801–1804.
Kluijtmans L.A.J., Young I.S., Boreham C.A. et al. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults // Blood. – 2003. – Vol.101, no 7. – Р. 2483–2488.
Krzystanek M., Pałasz A., Krzystanek E. et. al. S-adenosyl L-methionine in CNS diseases // Psychiatria Polska. – 2011. – Vol.XLV, no 6. – P. 923–931. (in Polish)
Lieber C.S. S-adenosyl-L-methionine: its role in the treatment of liver disorders // Am. J. Clin. Nutr. – 2002. – Vol.76, iss.5. – P. 1183S–1187S.
Ma J., Stampfer M.J., Christensen B. et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocysteine, and colorectal cancer risk // Cancer Epidemiology Biomarkers & Prevention. – 1999. – Vol.8, no 9. – P. 825–829.
Michal G. Biochemical pathways: an atlas of biochemistry and molecular biology. – New York: John Wiley and Sons Inc., 1999. – P.399.
Mordier S., Bruhat A., Averous J., Fafournoux P. Cellular adaptation to amino acid availability: mechanisms involved in the regulation of gene expression and protein metabolism / In: Cell and Molecular Responses to Stress. Vol.3. Sensing, Signaling and Cell Adaptation / Eds. K.M.Storey, J.M.Storey. – New York: Elsevier Science, 2002. – P. 189–206.
Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway // Nutrients. – 2013. – Vol.5, iss.9. – P. 3481–3495.
Pe’gorier J.P. Regulation of gene expression by fatty acids // Curr. Opin. Clin. Nutr. Metab. Care. – 1998. – Vol.1. – P. 329–334.
Ratner V.A., Vasil’eva L.A. Induction of mobile genetic elements transpositions by stress effects // Soros Educational Journal. – 2000. – Vol.6, no 6. – P. 14–20. (in Russian)
Ratner V.A., Egorova A.V., Iudanin A.Ya. Stabilizing selection and computer models of the joint evolution of patterns of polygenes, transposable elements, and origin identity labels // Genetika. – 2003. – Vol.39, no 4. – P. 550–561. (in Russian)
Sang J.H., King R.C. Nutritional requirements of axenically cultured Drosophila melanogaster adults // J. Exp. Biol. – 1961. – Vol.38. – P. 793–809.
Singh K.R.P., Brown A.W.A. Nutritional requirements of Aedes aegypti L. // J. Insect. Physiol. – 1957. – Vol.1. – P. 199–220.
Shadrina E.G., Volpert Ya.L. Nature puts diagnosis // Ecology and life. – 2006. – No 2. – P. 60–63. (in Russian)
Sokolova G.G., Sharlayeva E.A. Workshop on bioindication of the ecological state of the environment. – Barnaul, 2006. – 109p.
Steinberg S.E. Mechanisms of folate homeostasis // American Journal of Physiology. Gastrointestinal and Liver Physiology. – 1984. – Vol.246. – G319–G324.
The vitamins: fundamental aspects in nutrition and health / Ed. F.C.Gerald. – 2008. – P. 355–380.
Towle H.C. Metabolic regulation of gene transcription in mammals // J. Biol. Chem. – 1995. – Vol.270. – P. 23235–23238.
Vasilyeva L.A., Antonenko O.V., Vykhristyuk O.V., Zakharov I.K. Selection changes the pattern of mobile genetic elements in genome of Drosophila melanogaster // Vavilov Journal of Genetics and Breeding. – 2008. – Vol.12, no 3. – P. 412–425.
Vaulont S., Vasseur-Cognet M., Kahn A. Glucose regulation of gene transcription // J. Biol. Chem. – 2000. – Vol.275. – P. 31555–31558.
Venters D. Folate synthesis in Ae. aegypti and Drosophila melanogaster larvae // Trans. R. Soc. Trop. Med. Hyg. – 1971. – Vol.65. – P. 687–688.
Volkova N.Ye., Philiponenko N.S., Kostenko V.V. et al. Changes of Drosophila melanogaster quantitative traits at the influence of the donor of methyl groups – betaine. I. An analysis of adaptability components and expressiveness of the trait radius incompletus // The Journal of V.N.Karazin Kharkiv National University. Series: biology. – 2010. – Vol.12, iss. 920. – P. 10–25. (in Russian)
Volkova N.Ye., Filiponenko N.S., Krasovska V.V. et al. Effect of the folic acid and methionine on Drosophila melanogaster fitness // The Journal of V.N.Karazin Kharkiv National University. Series: biology. – 2013. – Vol.17, iss.1056. – P. 62–73. (in Russian)
Wang Z., Tang W.H.W., Buffa J.A. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide // Eur. Heart. J. – 2014. – Vol.35, iss.14. – P. 904–910.
Woods D.D. The function of folic acid in cellular metabolism // Proc. R. Soc. Med. – 1964. – Vol.57. – P. 388–390.
Zakharenko L.P., Perepelkina M.P., Vasil'eva L.A. Change in the distribution of transposable elements in isogenic strain--cause or consequence in Drosophila melanogaster selection for quantitative traits? // Tsitologiia. – 2010. – Vol.52, no 6. – P. 487–492. (in Russian)
Zakharov V.M. Phenogenetic aspect of natural populations study // Populations Phenetics. – M., 1982. – P. 86–94. (in Russian)
Zeisel S.H., Mar M.-H., Howe J.C., Holden J.M. Concentrations of choline-containing compounds and betaine in common foods // J. Nutr. – 2003. – Vol.133, no 5. – P. 1302–1307.
Authors retain copyright of their work and grant the journal the right of its first publication under the terms of the Creative Commons Attribution License 4.0 International (CC BY 4.0), that allows others to share the work with an acknowledgement of the work's authorship.