Bioengineering of probiotic-loaded hydrogel films with high antimicrobial activity
Abstract
The rise of antimicrobial resistance complicates the management of infected wounds, necessitating novel therapeutic strategies. Probiotic-based therapies offer a promising alternative, but their efficacy depends on delivering a high concentration of viable, active microorganisms to the wound site. Alginate hydrogels are excellent carriers, but freshly prepared probiotic-loaded films often lack immediate therapeutic activity. This study aimed to investigate the effect of a post-immobilization cultivation period on the viability and antagonistic activity of Bifidobacterium bifidum LVA-3 and Lactobacillus bulgaricus 1Z 03501 immobilized in calcium alginate films. The central hypothesis was that this cultivation step would function as an in-situ bio-activation process, enhancing the films' therapeutic potential.
Methods. B. bifidum LVA-3 and L. bulgaricus 1Z 03501 were immobilized in calcium alginate films. The films were then cultivated in a nutrient medium for 2, 4, or 6 days at 37 °C. Viable cell counts were determined by plate counting after film dissolution. Antagonistic activity was assessed using an agar overlay diffusion method against pathogenic test strains (Staphylococcus aureus 209, Pseudomonas aeruginosa 9027, and Escherichia coli B), measuring the diameter of inhibition zones. The experimental data revealed that uncultivated films (Day 0) showed no antagonistic activity. Post-immobilization cultivation led to a significant increase in viable cell counts for both strains, with populations rising by over 100- to 500-fold within 2 days to therapeutically relevant levels (>10¹⁰ CFU/mL). B. bifidum LVA-3 showed rapid growth peaking at day 2, while L. bulgaricus 1Z 03501 maintained a high, stable population through day 6. This increased cell density directly correlated with the emergence of potent antagonistic activity against all three pathogenic strains. In summary, it can be concluded that a post-immobilization cultivation step is a critical bio-activation process that transforms probiotic-loaded alginate films from passive carriers into functionally potent biomaterials. This strategy effectively increases probiotic viability to therapeutic concentrations and enables the in-situ production of antimicrobial compounds. This two-step approach of immobilization followed by cultivation presents a novel method for developing high-efficacy probiotic formulations for applications such as bioactive wound dressings.
Downloads
References
Abdul, M. M. (2025). Progress in probiotic science: Prospects of functional probiotic-based foods and beverages. International Journal of Food Science, 2025, 5567567. https://doi.org/10.1155/ijfo/5567567
Adegbeye, M. J., Adetuyi, B. O., Igirigi, A. I., Adisa, A., Palangi, V., Aiyedun, S., Alvarado-Ramírez, E. R., Elghandour, M. M. M. Y., Molina, O. M., Oladipo, A. A., Salem, A. Z. M. (2024). Comprehensive insights into antibiotic residues in livestock products: Distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control, 163, 110545. https://doi.org/10.1016/j.foodcont.2024.110545
Alberts, A., Tudorache, D. I., Niculescu, A. G., Grumezescu, A. M., Ciocan, A. I. (2025). Advancements in wound dressing materials: Highlighting recent progress in hydrogels, foams, and antimicrobial dressings. Gels, 11(2), 123. https://doi.org/10.3390/gels11020123
Almuhayawi, M. S., Alruhaili, M. H., Gattan, H. S., Al Jaouni, S. K., Selim, S., AbdElgawad, H.,
Al-Hoshani, N. A. (2023). Staphylococcus aureus induced wound infections which antimicrobial resistance, methicillin- and vancomycin-resistant: Assessment of emergence and cross sectional study. Infection and Drug Resistance, 16, 5335–5346. https://doi.org/10.2147/IDR.S418681
Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
Babenko, L. P., Tymoshok, N. O., Safronova, L. A., Demchenko, O. M., Zaitseva, G. M., Lazarenko, L. M., Spivak, M. J. (2022). Antimicrobial and therapeutic effect of probiotics in cases of experimental purulent wounds. Biosystems Diversity, 30(1), 22–30. https://doi.org/10.15421/012203
Bădăluță, V. A., Curuțiu, C., Dițu, L. M., Chifiriuc, M. C., Lazar, V., Bolocan, A. (2024). Probiotics in wound healing. International Journal of Molecular Sciences, 25(11), 5723. https://doi.org/10.3390/ijms25115723
Byk, P. L., Kryvorchuk, I. H., Leshchyshyn, I. M., Andrusyshyna, I. M., Kobza, I. I., Datsko, T. V., Kozovyi, V. B., Yarema, V. V., Martynyuk, R. S., Savchuk, T. I. (2024). Epidemiology and antibiotic resistance of combat wound infection in surgical patients. Ukrainian Journal of Cardiovascular Surgery, 32(2), 129–140. https://doi.org/10.30702/ujcvs/24.32(02)/BK019-129140
Dai, J., Luo, W., Hu, F., Yu, K., Zhu, H., Pan, L., Zeng, H., Huang, Q., Liu, S. (2024). In vitro inhibition of Pseudomonas aeruginosa PAO1 biofilm formation by DZ2002 through regulation of extracellular DNA and alginate production. Frontiers in Cellular and Infection Microbiology, 13, 1333773. https://doi.org/10.3389/fcimb.2023.1333773
Diep, E., Schiffman, J. D. (2024). Living antimicrobial wound dressings: Using probiotic-loaded, alginate nanofibers for protection against methicillin-resistant Staphylococcus aureus. ACS Applied Bio Materials, 7(2), 787–790. https://doi.org/10.1021/acsabm.3c01240
Dueñas, M. T., López, P. (2022). Functional analysis of lactic acid bacteria and bifidobacteria and their effects on human health. Foods, 11(15), 2293. https://doi.org/10.3390/foods11152293
Eiselt, P., Yeh, J., Latvala, R.K., Shea, L.D., Mooney, D.J. (2000). Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 21(19), 1921-1927. https://doi.org/10.1016/s0142-9612(00)00033-8
Goo, E., Hwang, I. (2024). Control of bacterial quorum threshold for metabolic homeostasis and cooperativity. Microbiology Spectrum, 12(1), e0335323. https://doi.org/10.1128/spectrum.03353-23
Gul, S., Durante-Mangoni, E. (2024). Unraveling the puzzle: Health benefits of probiotics—A comprehensive review. Journal of Clinical Medicine, 13(5), 1436. https://doi.org/10.3390/jcm13051436
Huang, Y., Zhang, L., Hu, J., Guo, Y., Liu, R., Dong, L., Wang, Z., Xiao, Y. (2023). Improved loading capacity and viability of probiotics encapsulated in alginate hydrogel beads by in situ cultivation method. Foods, 12(11), 2256. https://doi.org/10.3390/foods12112256
Ilyas, F., James, A., Khan, S., Ahmed, F., Naveed, R., Zaheer, R., Javed, M., Shahid, A., Riaz, H. (2024). Multidrug-resistant pathogens in wound infections: A systematic review. Cureus, 16(4), e58760. https://doi.org/10.7759/cureus.58760
Ismael, M., Huang, M., Zhong, Q. (2024). The bacteriocins produced by lactic acid bacteria and the promising applications in promoting gastrointestinal health. Foods, 13(23), 3887. https://doi.org/10.3390/foods13233887
Jafari, Z., Bardania, H., Barmak, M. J., Moradi, M., Kianbakht, S., Mozaffari-Khosravi, H. (2024). Antimicrobial, anti-inflammatory, and wound healing properties of Myrtus communis leaf methanolic extract ointment on burn wound infection induced by methicillin-resistant Staphylococcus aureus in rats. BioMed Research International, 2024, 6758817. https://doi.org/10.1155/2024/6758817
Ji, J., Li, T., Ma, B., Chen, H., Qu, C., Zhang, Y., Chen, X., Song, J. (2025). A Bifidobacterium strain with antibacterial activity, its antibacterial characteristics and in vitro probiotics studies. Microorganisms, 13(6), 1190. https://doi.org/10.3390/microorganisms13061190
Karachevtsev, V. A., Plokhotnichenko, A. M., Trufanov, O. V., Shevchenko, V. V., Leontiev, V. S. (2025). Levofloxacin loaded PMMA:PVP blended nanofiber mat as an antibacterial material. Materials Research Express, 12(7), 075403. https://doi.org/10.1088/2053-1591/adec42
Kessler, E. (2024). The secreted aminopeptidase of Pseudomonas aeruginosa (PaAP). International Journal of Molecular Sciences, 25(15), 8444. https://doi.org/10.3390/ijms25158444
Kong, C., Chen, S., Ge, W., Zhang, H., Su, Y., Li, B., Qian, Y., Zhang, Y. (2022). Riclin-capped silver nanoparticles as an antibacterial and anti-inflammatory wound dressing. International Journal of Nanomedicine, 17, 2629–2641. https://doi.org/10.2147/IJN.S366899
Kundukad, B., Rice, S. A., Doyle, P. S., Yang, L. (2025). Alginate exopolymer significantly modulates the viscoelastic properties and resilience of bacterial biofilms. NPJ Biofilms and Microbiomes, 11(1), 98. https://doi.org/10.1038/s41522-025-00718-6
Landa, G., Clarhaut, J., Buyck, J., Mendoza, G., Arruebo, M., Tewes, F. (2024). Impact of mixed Staphylococcus aureus-Pseudomonas aeruginosa biofilm on susceptibility to antimicrobial treatments in a 3D in vitro model. Scientific Reports, 14, 27877. https://doi.org/10.1038/s41598-024-79573-y
Li, X., Maaß, S., Ferrero-Bordera, B., Graumann, J., Moche, M., Völker, U., Bröker, B. M. (2025). The secreted proteases aur, scpA, sspA and sspB suppress the virulence of Staphylococcus aureus USA300 by shaping the extracellular proteome. Virulence, 16(1), 2514790. https://doi.org/10.1080/21505594.2025.2514790
Lou, J., Xiang, Z., Zhu, X., Wang, L., Wang, Z., Ouyang, Y., Yin, H., Feng, J., Zhang, M., Jiang, J. (2025). Evaluating the therapeutic efficacy and safety of alginate-based dressings in burn wound and donor site wound management associated with burn surgery: A systematic review and meta-analysis of contemporary randomized controlled trials. BMC Surgery, 25(1), 215. https://doi.org/10.1186/s12893-025-02956-z
Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells, 12(1), 184. https://doi.org/10.3390/cells12010184
Molujin, A. M., Abbasiliasi, S., Nurdin, A., Alhassan, M. H., Lee, P. C., Gansau, J. A., Jawan, R. (2022). Bacteriocins as potential therapeutic approaches in the treatment of various cancers: A review of in vitro studies. Cancers, 14(19), 4758. https://doi.org/10.3390/cancers14194758
Phan, S., Feng, C. H., Huang, R., Lee, N., Edgar, R. C., Armstrong, D. G. (2023). Relative abundance and detection of Pseudomonas aeruginosa from chronic wound infections globally. Microorganisms, 11(5), 1210. https://doi.org/10.3390/microorganisms11051210
Picó-Monllor, J. A., Sala-Segura, E., Tobares, R. A., Mingot-Ascencao, J. M. (2023). Influence and selection of probiotics on depressive disorders in occupational health: Scoping review. Nutrients, 15(16), 3551. https://doi.org/10.3390/nu15163551
Safronova, L., Pylypiuk, Y., Skorochod, I., Trufanov, O., Kryzhanovska, A. (2024). Probiotics and their potential for the prevention and treatment of infections. Mikrobiolohichnyi Zhurnal, 86(6), 74–91. https://ojs.microbiolj.org.ua/index.php/mj/article/view/220
Simons, A., Alhanout, K., Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), 639. https://doi.org/10.3390/microorganisms8050639
Singh, B., Metha, S., Asare-Amoah, J., Satyanarayana, S., Bansal, S., Singh, A. (2024). Biofilm-associated multidrug resistant bacteria among burn wound infections: A cross-sectional study. Mediterranean Journal of Infection, Microbes and Antimicrobials, 13(1), 15. https://doi.org/10.4274/mjima.galenos.2024.24179.15
Sirchak, Y., Nastych, M. (2022). Immunological disorders and colonic dysbiosis in patients with biliary lesions in type 2 diabetes mellitus and obesity. Gastroenterology, 55(4), 229–234. https://doi.org/10.22141/2308-2097.55.4.2021.247913
Sun, Q., Yin, S., He, Y., Cao, Y., Shan, S., Shan, C., Liu, J. (2023). Biomaterials and encapsulation techniques for probiotics: Current status and future prospects in biomedical applications. Nanomaterials, 13(15), 2185. https://doi.org/10.3390/nano13152185
Taha, S. R., Datau, F., Rokhayati, U. A., Unggango, Y. (2024). Detection of antibiotic residues in beef and beef liver in Gorontalo City. TERNAK TROPIKA Journal of Tropical Animal Production, 25(2), 131–140. https://doi.org/10.21776/ub.jtapro.2024.025.02.4
Tang, T. C., Tham, E., Liu, X., Yehl, K., Rovner, A. J., Yuk, H., de la Fuente-Nunez, C., Isaacs, F. J., Zhao, X., Lu, T. K. (2021). Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nature Chemical Biology, 17(6), 724–731. https://doi.org/10.1038/s41589-021-00779-6
Thiemicke, A., Neuert, G. (2023). Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments. Frontiers in Cell and Developmental Biology, 11, 1124874. https://doi.org/10.3389/fcell.2023.1124874
Trufanov, O., Martsenyuk, V., Stepanyuk, L. (2025). Viability and immobilization efficiency of probiotic Lactobacillus bulgaricus strain in alginate films. OneHealthJournal, 3(III), 48–55. https://doi.org/10.31073/onehealthjournal2025-III-03
V, A. L., Mohammed, A. K., Malaisamy, A., Vellingiri, V., Kumar, A. D., Prabhu, D., Sivanesan, S. (2021). Bacteriocin producing microbes with bactericidal activity against multidrug resistant pathogens. Journal of Infection and Public Health, 14(12), 1802–1809. https://doi.org/10.1016/j.jiph.2021.09.029
Vestweber, P. K., Wächter, J., Planz, V., Mertens, A., Fetzner, S., Ostermeier, A. M., Hensel, M. (2024). The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS ONE, 19(5), e0304491. https://doi.org/10.1371/journal.pone.0304491
Wang, X., Wang, H., Zhang, J., Xu, L., Wang, J., Li, Y., Yang, Y., Zhang, Y. (2025). Morphological variability of Escherichia coli colonizing human wounds: A case report. BMC Infectious Diseases, 25(1), 440. https://doi.org/10.1186/s12879-025-10484-7
Xiao, Y., Zhao, J., Zhang, H., Chen, W., Zhai, Q. (2021). Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microbial Genomics, 7(6), 000581. https://doi.org/10.1099/mgen.0.000581
Yakovychuk, N. D., Dejneka, S. Y., Sydorchuk, L. I., Rotar, D. V., Sydorchuk, I. Y., Popovych, V. B. (2017). Microbiological reasoning of the formation and development of vulvovaginal candidiasis. Zaporozhye Medical Journal, 4, 505–510. https://doi.org/10.14739/2310-1210.2017.4.105097
Zhang, M., Li, W., Yin, L., Chen, Z., Liu, Y., Guo, X., Tang, L., Chen, H. (2025). Multifunctional double-network hydrogel with antibacterial and anti-inflammatory synergistic effects contributes to wound healing of bacterial infection. International Journal of Biological Macromolecules, 271(Pt 2), 132672. https://doi.org/10.1016/j.ijbiomac.2024.132672
Authors retain copyright of their work and grant the journal the right of its first publication under the terms of the Creative Commons Attribution License 4.0 International (CC BY 4.0), that allows others to share the work with an acknowledgement of the work's authorship.