The meiobenthic communities of Senghor Seamount (Cabo Verde, tropical East Atlantic)
Abstract
Seamounts interest researchers because of their high biodiversity, high levels of endemism, and their importance for the dispersal and evolution of species. Especially interesting is the role of seamounts in the biogeography and phylogeography of interstitial meiofauna, microscopic animals that mostly lack dispersal stages in their life cycle. In this study, we analyse the composition of meiobenthic communities of the Senghor Seamount (Cabo Verde). The material was collected during the M79/3 cruise of R/V Meteor in 2009. Benthic sediments were collected with a multicorer and fixed with formaldehyde. Further extraction of meiofauna by density gradient centrifugation, sorting and counting of higher-level taxa was carried out in the laboratory. Our analyses involved estimating taxa densities, estimating different diversity indices and comparing similarity across sampling sites using non-metrical multidimensional scaling (nMDS). The results of the analyses showed that the summit has the highest higher taxa richness (HT: 11–16), the lowest level of dominance (D: 0.23–0.28), and the highest evenness of meiobenthic communities. The slopes had a lower level of higher taxa richness (HT: 12–13), a higher level of dominance (D: 0.5–0.61), and a lower level of evenness. The base had the lowest higher-taxon richness (HT: 10), the highest level of dominance (D: 0.82–0.87), and the lowest evenness. The nMDS revealed four distinct communities at the summit, the slope and the base of Senghor Seamount as well as at the deep-sea reference stations. There was a high dissimilarity of stations on the summit, which may indicate both, high biodiversity and heterogeneity of habitats. The slopes, the base and the reference sites show closer grouping of stations, which may indicate lower biodiversity of these areas, however, a lower number of stations were analysed. In comparison with other Atlantic seamounts and islands, Senghor Seamount shows up the second place regarding richness of meiobenthic higher-level taxa. The noticeably higher meiobenthic density values could be caused by the increased pelagic primary production in the sea area off tropical western Africa. Overall, the meiobenthic communities of Senghor Seamount seem to support the hypothesis of seamounts as oases for fauna, demonstrating more diverse assemblages compared to reference areas in the deep sea.
Downloads
References
Bray, J. R., Curtis, J. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349. https://doi.org/10.2307/1942268
Boehlert, G. W., Genin, A. (1987). A review of the effects of seamounts on biological processes. In: Keating, B. H., Fryer, P., Batiza, R., Boehlert, G. W. (eds.). Seamounts, islands, and atolls. Geophysical Monograph Series, American Geophysical Union, Washington D.C., pp. 321–334. https://doi.org/10.1029/GM043
Büntzow, M. (2011). Vergleichende gemeinschaftsanalytische und taxonomische Untersuchungen der Harpacticoidenfauna der Seeberge „Sedlo“ und „Seine“ (nördlicher Mittelatlantik). Doctoral thesis, Carl von Ossietzky Universität, Oldenburg.
Cerca, J., Purschke, G., Struck, T. H. (2018). Marine connectivity dynamics: clarifying cosmopolitan distributions of marine interstitial invertebrates and the meiofauna paradox. Marine Biology, 165, 1–21. https://doi.org/10.1007/s00227-018-3383-2
Chivers, A. J., Narayanaswamy, B. E., Lamont, P. A., Dale, A., Turnewitsch, R. (2013). Changes in polychaete standing stock and diversity on the northern side of Senghor Seamount (NE Atlantic). Biogeosciences, 10(6), 3535–3546. https://doi:10.5194/bg-10-3535-2013
Christiansen, B., Brand, T., Büntzow, M., Busecke, J., Coelho, R., Correia, S., Denda, A., Diniz, T., Jung, S., Kaufmann, M., Kieneke, A., Kiriakoulakis, K., Koppelmann, R., Kuhnert, J., Kwasnitschka, T., Lamont, P., Martin, B., Montgomery, J., Peine, F., ...Warneke-Cremer, C. (2011). Structure and function of seamount ecosystems in the Cape Verde Region, Northeast Atlantic - Cruise No. 79/3 - September 24 - October 23, 2009 - Las Palmas/Spain - Mindelo/Cape Verde. In METEOR-Berichte (M79/3, pp. 1–53). DFG-Senatskommission für Ozeanographie. https://doi.org/10.2312/cr_m79_3
Denda, A., Christiansen, B. (2014). Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Marine Ecology, 35(2), 159–179. https://doi.org/10.1111/maec.12065
Denda, A., Mohn, C., Wehrmann, H., Christiansen, B. (2017). Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. Journal of the Marine Biological Association of the United Kingdom, 97(1), 1-27. https://doi.org/10.1017/S0025315415002192
Dower, J.F., Mackas, D.L. (1996). „Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Research I, 43(6), 837–858. https://doi.org/10.1016/0967-0637(96)00040-4
Engelmann, H.D. (1978). Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia, 18, 378–380.
Fischer, G., Karstensen, J., Romero, O., Baumann, K. H., Donner, B., Hefter, J., Mollenhauer, G., Iversen, M., Fiedler, B., Monteiro, I., Körtzinger, A. (2016). Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation. Biogeosciences, 13(11), 3203—3223. https://doi.org/10.5194/bg-13-3203-2016
Gad, G., Schminke, H. K. (2004). How important are seamounts for the dispersal of meiofauna? Archive of Fishery and Marine Research, 51(1–3), 43–54.
George, K. H. (2013). Faunistic research on metazoan meiofauna from seamounts—–a review. Meiofauna marina, 20(February), 1–32.
George, K. H. (2022). The meiofauna of the Eratosthenes Seamount (eastern Mediterranean Sea)—first insights into taxa composition, distribution, and diversity. Marine Biodiversity, 52(6), 62. https://doi.org/10.1007/s12526-022-01295-z
George, K. H., Schminke, H. K. (2002). Harpacticoida (Crustacea, Copepoda) of the Great Meteor Seamount, with first conclusions as to the origin of the plateau fauna. Marine Biology, 141(5), 887–895. https://doi.org/10.1007/s00227-002-0878-6
George, K.H., Arndt, H., Wehrmann, A., Ávila, S.P., Baptista, L., Berning, B., Bruhn, M., Carvalho, F., Creemers, M., Defise, A., Hermanns, K., Hohlfeld, M., Iwan, F., Janßen, T., Jeskulke, K., Kagerer, M., Kaufmann, M., Kieneke, A., Loureiro, C., Madeira, P., Meyer, C., Narciso, A., Ostmann, A., Pieper, C., Quartau, R., Ramalho, R., Richter, K., Silva, T.L., Springer, B., Xavier, J. (2021). Scientific Report. BIODIAZ – Controls in benthic and pelagic BIODIversity of the AZores. Cruise No. M150. August 27–October 2, 2018. Cádiz (Spain) – Ponta Delgada, São Miguel (Azores). https://www.pangaea.de/expeditions/bybasis/Meteor%20%281986%29
George, K.H., Jacoby, J., Schnier, J. Kieneke, A. (in rev.). Living at highest latitudes – the meiofauna of the Langseth Ridge (Arctic Ocean) – taxa composition, distribution, diversity, and comparison with other marine regions. Polar Biology.
Giere, O. (2009). Meiobenthology: The microscopic motile fauna of aquatic sediments, 2nd Edition, Springer Verlag, Berlin, 527 pp.
Hammer, Ø., Harper, D. A., Ryan P. D. (1999–2022). Past: paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 1–9.
Hanel, R., John, H. C., Meyer-Klaeden, O., Piatkowski, U. (2010). Larval fish abundance, composition and distribution at Senghor Seamount (Cape Verde Islands). Journal of plankton research, 32(11), 1541–1556. https://doi.org/10.1093/plankt/fbq076
Kwasnitschka, T., Hansteen, T. H., Ramalho, R.S., Devey, C. W., Klügel, A., Samrock, L.K., Wartho, J.A. (2024). Geomorphology and age constraints of seamounts in the Cabo Verde Archipelago, and their relationship to island ages and geodynamic evolution. Geochemistry, Geophysics, Geosystems, 25(3), e2023GC011071. https://doi.org/10.1029/2023GC011071
Levin, L.A., Gooday, A. J. (2003). Chapter 5. The deep Atlantic Ocean. In: Tyler, P.A. (ed.) Ecosystems of the deep oceans. Ecosystems of the World, 28, Elsevier, Amsterdam, pp. 111-178.
McClain, C. R. (2007). Seamounts: identity crisis or split personality? Journal of Biogeography, 34, 2001–2008. https://doi.org/10.1111/j.1365-2699.2007.01783.x
Misic, C., Bavestrello, G., Bo, M., Borghini, M., Castellano, M., Covazzi Harriague, A., Massa, F., Spotorno, F., Povero, P. (2012). The ‘‘seamount effect’’ as revealed by organic matter dynamics around a shallow seamount in the Tyrrhenian Sea (Vercelli Seamount, western Mediterranean). Deep-Sea Research I, 67, 1–11. http://dx.doi.org/10.1016/j.dsr.2012.04.012
Mohn, C., White, M., Denda, A., Erofeeva, S., Springer, B., Turnewitsch, R., Christiansen, B. (2021). Dynamics of currents and biological scattering layers around Senghor Seamount, a shallow seamount inside a tropical Northeast Atlantic eddy corridor. Deep Sea Research Part I: Oceanographic Research Papers, 171, 103497. https://doi.org/10.1016/j.dsr.2021.103497
Nellemann, C., Hain, S., Alder, J. (2008). In Dead Water - Merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds. United Nations Environment Programme, GRID-Arendal, Norway, www.grida.no, 62 pp.
Passarelli, C., Olivier, F., Paterson, D. M., Hubas, C. (2012). Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Marine Ecology Progress Series, 465, 85-97. https://doi.org/10.3354/meps09915
Pfannkuche, O., Thiel, H. (1988). 9. Sample processing. In: Higgins, R. P., Thiel, H. (eds). Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp. 134–145.
Pielou, E. C. (1966). Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist, 100(914), 463–465.
Rogers, A. D. (1994). The biology of seamounts. In: Blaxter, J.H.S., Southward, A.J. (eds.) Advances in Marine Biology, Vol. 30, Academic Press, London, pp. 305–350. https://doi.org/10.1016/S0065-2881(08)60065-6
Schmidt-Rhaesa, A. (2020). Guide to the Identification of Marine Meiofauna. Verlag Dr. Friedrich Pfeil, München, 607 pp.
Shank, T. M. (2010). Seamounts: deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography, 23(1), 108–122.
Shannon, C. E., Weaver, W. (1963). The mathematical theory of communication. University of Illinois press, 127 pp.
Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688–688.
Soltwedel, T., Thiel, H. (1995). Biogenic sediment compounds in relation to marine meiofaunal abundances. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 80(2), 297–311. https://doi.org/10.1002/iroh.19950800216
Somerfield, R.M., Warwick, R.M., Moens, T. (2005). Chapter 6. Meiofauna techniques. In: Eleftheriou, A., McIntyre, A. (eds.) Methods for the Study of Marine Benthos. Blackkwell Science, Oxford, pp. 229–272.
Thiel, H. (1979). Structural aspects of the deep-sea benthos. Ambio Special Report, 6, 25–31.
Tojeira, I., Souto, M., Kaufmann, M., Ramos, M., Carreiro-Silva, M., Fock, H.O., George, K.H., Gerkema, T., Morato, T., Mouriño, B., van Haren, H., White, M., Xavier, J.R., Rafael, T., Martin, B., Cabral, H., Lino Costa, J., Mohn, C. (2025) From physics to fish: 50 years of research at Great Meteor Seamount, NE Atlantic. Marine Biodiversity 55:10. https://doi:org/10.1007/s12526-024-01484-y
Trokhymchuk, R., Kieneke, A. (2024). New records of deep-sea Gastrotricha and Tardigrada from Iberian and Canary Basins (Northeast Atlantic) with comments on abyssal meiofauna composition and the meiofauna paradox. The Journal of VN Karazin Kharkiv National University. Series «Biology», 43, 66–84. https://doi.org/10.26565/2075-5457-2024-43-6
Turnewitsch, R., Dumont, M., Kiriakoulakis, K., Legg, S., Mohn, C., Peine, F., Wolff, G. (2016). Tidal influence on particulate organic carbon export fluxes around a tall seamount. Progress in Oceanography, 149, 189–213. https://doi.org/10.1016/j.pocean.2016.10.009
Vieira, R. P., Coelho, R., Denda, A., Martin, B., Gonçalves, J. M., Christiansen, B. (2018). Deep-sea fishes from Senghor Seamount and the adjacent abyssal plain (Eastern Central Atlantic). Marine Biodiversity, 48(2), 963–975. https://doi.org/10.1007/s12526-016-0548-4
Watson, C., Chivers, A. J., Narayanaswamy, B. E., Lamont, P., Turnewitsch, R. (2014). Chrysopetalidae (Annelida: Phyllodocida) from the Senghor Seamount, north-east Atlantic: taxa with deep-sea affinities and morphological adaptations. Memoirs of Museum Victoria, 71, 311–325.
Yamasaki, H., Neuhaus, B., George, K. H. (2019). Echinoderid mud dragons (Cyclorhagida: Kinorhyncha) from Senghor Seamount (NE Atlantic Ocean) including general discussion of faunistic characters and distribution patterns of seamount kinorhynchs. Zoologischer Anzeiger, 282, 64–87. https://doi.org/10.1016/j.jcz.2019.05.018
Yesson, C., Clark, M. R., Taylor, M. L., Rogers, A. D. (2011). The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Research Part I: Oceanographic Research Papers, 58(4), 442–453. https://doi.org/10.1016/j.dsr.2011.02.004
Zhao, R., Zhao, F., Feng, L., Fang, J.K.-H., Liu, C., Xu, K. (2023). A deep seamount effect enhanced the vertical connectivity of the planktonic community across 1,000 m above summit. Journal of Geophysical Research, 128(3): e2022JC018898. https://doi.org/10.1029/2022JC018898
Zeppilli, D., Bongiorni, L., Cattaneo, A., Danovaro, R., Santos, R. S. (2013). Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 87–100. https://doi.org/10.1016/j.dsr2.2013.08.009
Authors retain copyright of their work and grant the journal the right of its first publication under the terms of the Creative Commons Attribution License 4.0 International (CC BY 4.0), that allows others to share the work with an acknowledgement of the work's authorship.