Schistosoma japonicum complex: COI-sequences variations of parasites and their intermediate hosts analyzed using BLAST
Abstract
In this research, I report on the relationship between S. ovuncatum, S. sinensium, S. japonicum, S. mekongi, and S. malayensis. In addition, I also report on the relationship between five species of Oncomelania and Neotricula aperta, Robertsiella spp, and Tricula spp. Furthermore, I describe the formation of the genus Oncomelania from its predecessor forms. The results of nucleotide BLAST showed that S. japonicum shares 99.45% identity with S. malayensis, 98.77% identity with S. mekongi, 98.07% identity with S. sinensium, and 97.85% identity with S. ovuncatum. In addition, the sequence of S. malayensis shares 100% identity with S. mekongi. The E value is less than 0.01. There was no amino acid replacement in the alignment results of the S. japonicum complex. There are no base substition in S. malayensis and S. mekongi, 37 base substitutions in S. malayensis and S. sinensium, ten base substitutions in S. malayensis and S. japonicum, five base substitutions in S. malayensis and S. ovuncatum. The tree-view slanted cladogram showed that S. sinensium is a sister to S. ovuncatum. It split into S. japonicum. Schistosoma japonicum splits into S. mekongi and S. malayensis. The results also showed that Oncomelania robertsoni shares 86.12% identity with Neotricula aperta, 85.88% identity with Robertsiella spp., and 85.28% identity with Tricula bollingi. The E value is less than 0.01. There are two amino acid replacements in O. robertsoni and N. aperta alignments, four amino acid replacements and 84 base substitutions in O. robertsoni and Robertsiella, and two amino aciid replacements and 88 base substitutions in O. robertsoni and T. bolingi. The tree-view slanted cladogram showed that Tricula spp. split into N. aperta and Robertsiella spp. This study showed that Oncomelania rose from its predecessor forms. Nucleotide BLAST results showed that S. ovuncatum is close to S. sinensium. Schistosoma sinensium split into S. japonicum, S. mekongi, and S. malayensis. Oncomelania robertsoni was close to N. aperta than to Robertsiella spp., and then Tricula spp. (Tricula bollingi). Oncomelania species emerged from their predecessor forms.
Downloads
References
Attwood, S.W, Fatih, F.A, Upatham, .E.S. (2008). DNA-sequence variation among Schistosoma mekongi populations and related taxa; phylogeography and the current distribution of Asian schistosomiasis. PloS Negl Trop Dis, 2(3), e200. https://doi.org/10.1371/journal.pntd.000200.
Attwood, S.W., Upatham E.S. (2012). Observations on Neotricula aperta (Gastropoda: Pomatiopsidae) population densities in Thailand and Central Laos: implications for the spread of Mekong schistosomiasis. Parasites & Vectors, 5, 126. https://doi.org/doi:10.1186/1756-3305-5-126.
Attwood, S.W, et al. (2015) Comparative phylogenitic studies on Schistosoma japonicum and its snail intermediate host Oncomelania hupensis: origins, dispersal and coevolution. PloS Negl Trop Dis, 9(7), e0003935. https://doi.org/10.1371/journal.pntd.0003935.
Attwood, S.W., Liu, L., Huo, G-N. (2019). Population genetic structure and geographical variation in Neotricula aperta (Gastropoda: Pomatiopsidae), the snail intermediate host of Schistosoma mekongi (Digenea: Schistosomatidae). PloS Negl Trop Dis, 13(1), e0007061. https://doi.org/10.1371/journal.pntd.0007061.
Au, F.F.A. et al. (2023). Status quo and future perspectives of molecular and genomic studies on the genus Biomphalaria—the intermediate snail host of Schistosoma mansoni. Molecular Sciences, 24, 4895. https://doi.org/10.3390/ijms24054895.
Brant, S.V., Loker, E.S. (2005). Can specialized pathogens colonize distantly related hosts? Schistosome evolution as a case study. PloS Pathog, 1(3), e38. https://doi.org/10.1371/journal.ppat.0010038.
Budiono, N.G. et al. (2019). The contribution of domestic animals to the transmission of schistosomiasis japonica in the Lindu Subdistrict of the Central Sulawesi Province, Indonesia. Veterinary World, 12(10), 1591-1598. https://doi.org/10.14202/vetworld.2019.1591-1598.
Budiono, N.G. et al. (2020) Humoral responses to Schistosoma japonicum soluble egg antigens in domestic animals in Lindu Subdistrict, Central Sulawesi Province, Indonesia. International Journal of One Health, 6(2), 99-108. https://doi.org/10.14202/IJOH.2019.99-108.
Davis, G.M. (1992) Evolution of prosobranch snails transmitting Asian Schistosoma; coevolution with Schistosoma: a review. Prog Clin Parasitol, 3, 145-204.
Fang, J. et al. (2022) Single-target detection of Oncomelania hupensis based on improved YOLOv5s. Front. in Bioeng. Biotechnol, 10, 861079. https://doiorg/10.3389/fbioe.2022.861079.
Gordon, C.A et al. (2019). Asian schistosomiasis: current status and prospects for control leading to elimination. Trop. Med. Infect., 4: 40. https://doi.org/10.3390/tropicalmed4010040.
Inceboz, T. (2022) One health concept against schistosomiasis: an overview. New Horizon for schistosomiasis research, intechopen, London. https://doi.org/10.5772/intechopen.106912.
Haggag, A.A. et al. (2019). Thirty-day Daily Comparisons of Kato-Katz and CCA Assays of 45 Egyptian Children in Areas with Very Low Prevalence of Schistosoma mansoni. Am J Trop Med, 100(3), 578-583. https://doi.orh10.4269/ajtmh.18-0829.
Hauswald, A.K. et al. (2011). Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area. Parasites & Vectors, 4, 206. https://doi.org10.1186/1756-3305-4-206.
Kameda, Y., Kato, M. (2011) Terrestrial invasion of pamatiopsid gastropods in the heavy-snow region of the Japanese archipelago. BMC Evolutionary Biology, 11, 118. https://doi.org/10.1186/1471-2148-11-118.
Latif, B. et al. (2013). Autochthhonous human schistosomiasis, Malaysia. Emerging Infectious Diseases, 19(8), 1340-1341. https://doi.org/10.3201/eid1908.121710.
Lawton, S.P. et al. (2011). Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasites and Vectors, 4, 131. https://doi.org/10.1186/1756-3305-4-131.
Leshem, E., Marva, E., Schwartz, E. (2009) Travel-related schistosomiasis acquired in Laos. Emerging Infectious Diseases, 15(11), 1823-1825. https://doi.org/10.3201/eid1511.090611.
Liu, L. et al. (2014). A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): A resource for taxonomic, parasitological, biodiversity studies. BMC Evolutionary Biology, 14, 29. https://doi.org/10.1186/1471-2148-14-29.
Maezawa, K. et al. (2018). Real-time observation of pathophysiological processes during murine experimental Schistosoma japonicum infection using high-resolution ultrasound imaging. Tropical Medicine and Health, 46: 1. https://doi.org/10.1186/s41182-017-0082-5.
Mouahid, G. et al. (2018). Transplantation of schistosome sporocysts between host snails: A video guide. Wellcome Open Research, 3(3). https://doi.org/10.12688/wellcomeopenres.
Nahum, L.A. et al. (2012). New frontiers in Schistosoma genomics and transcriptomics. International of Parasitology Research, 2012(849132), 1-11. https://doi.org/10.1155/2012/849132.
Nelwan, M.L. (2019). Schistosomiasis: life cycle, diagnosis, and control. Current Therapeutic Research, 91, 5-9. https://doi.org/10.1016/j.curtheres.2019.06.001.
Nelwan, M.L. (2023) Oncomelania lorelindoensis: the intermediate host of Sulawesi’s Schistosoma japonicum. Preprint at https://doi.org/10.2103/rs.3.rs-3471885/v1
Nelwan, M.L. (2022). Indonesia Schistosoma japonicum: Origin, genus Oncomelania, and elimination of the parasite with cluster genes inoculated into female Oncomelania lorelindoensis via CRISPR/Cas9 system. Afr. J. Bio. Sc, 4(4), 23-38. https://doi.org/10.33472/AFJBS.4.4.2022.23-38.
Neves, B.J. et al. (2015). Natural Products as Leads in Schistosome Drug Discovery. Molecules, 2, 1872-903. https://doi.org/10.3390/molecules20021872.
Okamoto, M. et al. (2003) Pgylogenetic relationships of snails of the genera Oncomelania and Tricula inferred from the mitochondrial 12S rRNA gene. Jpn. J. Trop. Med. Hyg., 31(1), 5-10.
Orpin, J.B., Mzungu, I., Usman-Sani, H. (2022). Prevalence of schistosomiasis among primary school pupils in Guma LGA of Benue state. Afr. J. Bio. Sc., 4(4), 48-55. https://doi.org/10.3347/AFJBS.4.4.02.48-55.
Rothe, C. et al. (2021). Developing Epidemicity of Schistosomiasis, Corsica, France. Emerging Infectious Diseases, 27(1),319-321. https://doi.org/10.3201/eid2701.204391.
Sady, H., et al. (2015) New insights into the genetic diversity of Schistosoma mansoni and S. haematobium in Yemen. Parasites & Vectors, 8, 544. https://doi.org/10.1186/s13071-015-1168-8.
Sanchez, R.C.O. et al. (2021) Immunoinformatics design of multiepitope peptide based vaccines against Schistosoma mansoni using transmembrane proteins a target. Front. Immunol, 12, 021706. https://doi.org/10.3389/fimmu.2021.021706.
Smith, E. (2023). BLAST compares & identifies sequences. Berkeley Library, https://guides.lib.berkeley.edu/ncbi/blast
Sudomo, M. (1983). Cross infectivity study of four subspecies of Oncomelania hupensis in four geographical strains of Schistosoma japonicum. Proceedings ITB, 16(2): 41-46.
Sutrisnawati, Ramadhan, A., Trianto, M. (2022) Molecular identification of Oncomelania hupensis lindoensis, snail intermediate hosts of Schistosoma japonicum from Central Sulawesi, Indonesia. Biodiversitas, 23(11), 5989-5994. https://doi.org/10.13057/biodiv/d231153.
Walker, J.A. (2011). Insight into the functional biology of schistosomes. Parasites & Vector, 4, 203. https://doi.org/10.1186/1756-3305-4-203.
Wang, X. et al. (2021). First report of Schistosoma sinensium infecting Tupaia belangeri and Tricula sp. LF. International Journal for Parasitology: Parasites and Wildlife, 14(2021), 84-90. https://doi.org/10.1016/j.ijppaw.2021.01.005.
Yin, M. et al. (2015). Codispersal of the blood fluke Schistosoma japonicum and Homo sapiens in the Neolithic age. Scientific Reports, 5, 18058. https://doi.org/10.1038/srep18058.
Young, N.D. et al. (2015). Exploring molecular variation in Schistosoma japonicum in China. Scientific Reports, 5, 17345. https://doi.org/10.1038/srep17345.
ZooBank, https://zoobank.org/References/d71b8509-ec6e-492b-8e81-8910957a7b6a
Authors retain copyright of their work and grant the journal the right of its first publication under the terms of the Creative Commons Attribution License 4.0 International (CC BY 4.0), that allows others to share the work with an acknowledgement of the work's authorship.