Tadpole morphology features of different Pelophylax esculentus complex forms

Keywords: water frogs, larvae, development, progeny, hybrid, triploid

Abstract

Complicated relationships between different forms of Pelophylax esculentus complex are strongly connected to their reproduction modes. Stability of the hemiclonal population systems including variety of hybrids is provided by balance between gamete production patterns and selective death of offspring portion. A direct way to study such mechanisms is to investigate the ontogeny of different forms – that means studying their tadpoles. However, there are still no suitable methods to morphologically distinguish the known diversity of hybrid forms (2n and 3n of different genomic composition) from the naturally diverse parental species at the tadpole stage. The present work is aimed to investigate external quantitative (measurements-based) and coloration features for tadpoles of parental species (P. lessonae, P. ridibundus “pure” and triploid-born) and of two P. esculentus forms (progeny of unusual LLR-females and diploid hybrids). For this purpose, the set of experimental artificial crossings were established and larvae were reared under similar conditions (equal water volume, light, temperature and feeding regimes). Species and ploidy of experimental frogs were identified using external morphology features, microscopic cytometry of blood cells, karyology of intestine mitotic cells and microsatellite analysis. Coloration of different body parts were scored visually using microscope; measuring was performed by microscopic photographing with scale and further measuring using AxioVision soft. Measurements were analyzed via multidimensional analyses (PCA, discriminant, canonical), and appeared weakly applicable taken both together and separately. It allowed us only to partly separate progeny of two parental species from each other and from progeny of unusual triploid hybrids. States combinations of coloration features appeared to be specific for each form taken into analysis, but only at the particular age range. Specificities of triploid and different P. ridibundus groups can be explained by natural variability as well as by peculiar processes in hybridogenetic systems.

Downloads

Download data is not yet available.

Author Biography

M. Drohvalenko, V.N. Karazin Kharkiv National University

Svobody square 4, Kharkiv, Ukraine, 61022, m.drohvalenko@karazin.ua

References

Altig R. (1970). A Key to the Tadpoles of the Continental United States and Canada. Herpetologica, 26(2), 180–207.

Altig R. (2007). A primer for the morphology of anuran tadpoles. Herpetological Conservation and Biology, 2(1), 71–74.

Altig R., McDiarmid R.W. (2015). Handbook of larval amphibians of the United States and Canada. Comstock Publishing Associates, a division of Cornell University Press. Ithaca, London. 345 p.

Amanat Behbahani M., Nokhbatolfoghahai M., Esmaeili H.R. (2014). Intra-specific variation in Pelophylax ridibunda (Rana ridibunda) in Southern Iran: Life history and developmental patterns. Iranian Journal of Animal Biosystematics, 10(1), 11–28. https://dx.doi.org/10.22067/ijab.v10i1.36787

Arifulova I.I., Chirikova M.A. (2018). Morphological variability of larval mouthparts of the marsh frog Pelophylax ridibundus (Pallas, 1771) (Anura, Ranidae) in natural populations of Southeastern Kazakhstan. KnE Life Sciences, 1–6. https://dx.doi.org/10.18502/kls.v4i3.2095

Berger L. (2008). European green frogs and their protection. Fundacja Biblioteka Ekologiczna, PRODRUK.

Biriuk O.V., Shabanov D.A., Korshunov A.V. et al. (2016). Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. Journal of Zoological Systematics and Evolutionary Research, 54(3), 215–225. https://doi.org/10.1111/jzs.12132

Birstein V.J. (1984). Localization of NORs in karyotypes of four Rana species. Genetica, 64(3), 149–154. https://doi.org/10.1007/BF00115338

Bondareva A.A., Bibik Yu.S., Samilo S.M., Shabanov D.A. (2012). Erythrocytes cytogenetic characteristics of green frogs from Siversky Donets centre of Pelophylax esculentus complex diversity. The Journal of V.N.Karazin Kharkiv National University, 15(1008), 116–123. (In Russian)

Bondareva A.A., Sedova K.V., Shabanov D.A. (2013). The comparison of several hematological parameters of diploid and triploid Pelophylax esculentus. Proceedings of Ukrainian Herpetological Society, 4, 22–26. (In Ukrainian)

Borkin L.J., Korshunov A.V., Lada G.A. et al. (2004). Mass occurrence of polyploid green frogs (Rana esculenta complex) in Eastern Ukraine. Russian Journal of Herpetology, 11(3), 194–213. (In Russian)

Christiansen D.G., Jakob C., Arioli M. et al. (2010). Coexistence of diploid and triploid hybrid water frogs: Population differences persist in the apparent absence of differential survival. BMC Ecology, 10(1), 14. https://doi.org/10.1186/1472-6785-10-14

Dedukh D., Litvinchuk S., Rosanov J. et al. (2017). Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: Results from artificial crossings experiments. BMC Evolutionary Biology, 17, 220. https://doi.org/10.1186/s12862-017-1063-3

Dedukh D., Riumin S., Chmielewska M. et al. (2020). Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Scientific Reports, 10(8720), 1–13. https://doi.org/10.1038/s41598-020-64977-3

Dedukh D.V., Krasikova A.V. (2017). Methodological approaches for studying the european water frog Pelophylax esculentus complex. Russian Journal of Genetics, 53(8), 843–850. https://doi.org/10.1134/S102279541708004X

Dettlaff T., Vassetzky S. (1991). Animal species for developmental studies: Vol. 2. Vertebrates. Consultants Bureau. New York. 466 p. https://doi.org/10.1007/978-1-4615-3654-3

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. (2010). Official Journal of the European Union.

Drohvalenko M.O., Makaryan R.M., Biriuk O.V. et al. (2017). The paradox of the reproduction of triploid Pelophylax esculentus in the hemiclonal population systems in Brusivka (Donetsk region) and Kreminna (Lugansk region). The Journal of V.N.Karazin Kharkiv National University, 29, 142–150 (In Russian).

Fedorova A., Pustovalova E. (2019). Results of artificial crossings expand data about reproduction and composition of unusual population system (Pelophylax esculentus complex). Abstract Book of 62nd International conference for students of physics and natural sciences Open Readings, 460.

Gosner K.L. (1960). A Simplified Table for Staging Anuran Embryos and Larvae with Notes on Identification. Herpetologica, 16(3), 183–190.

Grosjean S. (2005). The choice of external morphological characters and developmental stages for tadpole-based anuran taxonomy: A case study in Rana (Sylvirana) nigrovittata (Blyth, 1855) (Amphibia, Anura, Ranidae). Contributions to Zoology, 74(1/2), 61–76. https://doi.org/10.1163/18759866-0740102005

Günther R. (1978). Zur Larvenmorphologie von Rana ridibunda Pall., R. lessonae Cam. Und Deren Bastard R. “esculenta” L. (Anura, Ranidae). Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin), 54(1), 161–179. https://doi.org/10.1002/mmnz.19780540107

Haas A., Das I. (2011). Describing east malaysian tadpole diversity: Status and recommendations for standards and procedures associated with larval amphibian description and documentation. Bonner Zoologische Monographien, 57, 29–46.

Haczkiewicz K., Rozenblut-Kościsty B., Ogielska M. (2017). Prespermatogenesis and early spermatogenesis in frogs. Zoology, 122, 63–79. https://doi.org/10.1016/j.zool.2017.01.003

Hermaniuk A., Rybacki M., Taylor J.R.E. (2016). Low Temperature and Polyploidy Result in Larger Cell and Body Size in an Ectothermic Vertebrate. Physiological and Biochemical Zoology, 89(2), 118–129. https://doi.org/10.1086/684974

Ilić M., Jojić V., Stamenković G. et al. (2019). Geometric vs. Traditional morphometric methods for exploring morphological variation of tadpoles at early developmental stages. Amphibia-Reptilia, 40(4), 499–509. https://doi.org/10.1163/15685381-00001193

Ilić M., Stamenković G., Nikolić V. et al. (2016). Identification of syntopic Anuran species in early tadpole stages: Correspondence between morphometric and genetic data. Applied Ecology and Environmental Research, 14(2), 381–397. https://doi.org/10.15666/aeer/1402_381397

Johari S.A., Sourinejad I., Asghari S., Bärsch N. (2015). Toxicity comparison of silver nanoparticles synthesized by physical and chemical methods to tadpole (Rana ridibunda). Caspian Journal of Environmental Sciences, 13(4), 383–390

Johnson J.B., Saenz D., Adams C.K., Hibbitts T.J. (2015). Naturally occurring variation in tadpole morphology and performance linked to predator regime. Ecology and Evolution, 5(15), 2991–3002. https://doi.org/10.1002/ece3.1538

Kierzkowski P., Paśko Ł., Rybacki M. et al. (2011). Genome Dosage Effect and Hybrid Morphology—The Case of the Hybridogenetic Water Frogs of the Pelophylax esculentus Complex. Annales Zoologici Fennici, 48(1), 56–66. https://doi.org/10.5735/086.048.0106

Leuenberger J., Gander A., Schmidt B.R., Perrin N. (2014). Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe? Genetic evidence from a field study. Conservation Genetics, 15(4), 869–878. https://doi.org/10.1007/s10592-014-0585-0

Mazepa G., Dolezalkova M., Choleva L. et al. (2018). Distinct fate of the asexual genomes in two convergently evolved Pelophylax hybridogenetic systems. In: Sex uncovered: the evolutionary biology of reproductive systems, 57.

McCollum S.A., Leimberger J.D. (1997). Predator-induced morphological changes in an amphibian: Predation by dragonflies affects tadpole shape and color. Oecologia, 109(4), 615–621. https://doi.org/10.1007/s004420050124

McDiarmid R.W., Altig R. (1999). Tadpoles. The biology of Anuran larvae. The University of Chicago Press. Chicago, London. 444 p.

Meleshko O.V., Korshunov O.V., Shabanov D.A. (2014). The study of three hemiclonal population systems of Pelophylax esculentus complex from the Seversko-Donetskiy center of green frogs’ diversity. The Journal of V.N.Karazin Kharkiv National University, 20(1100), 153–158.

Morozov-Leonov S.Yu., Mezhzherin S.V., Nekrasova O.D. et al. (2009). Inheritance of parental genomes by a hybrid form Rana “esculenta” (Amphibia, Ranidae). Russian Journal of Genetics, 45(4), 423–429. https://doi.org/10.1134/S1022795409040061

Plenet S., Hervant F., Joly P. (2000). Ecology of the Hybridogenetic Rana esculenta Complex: Differential Oxygen Requirements of Tadpoles. Evolutionary Ecology, 14, 13–23. https://doi.org/10.1023/A:1011056703016

Plotner J. (2005). Die westpalaarktischen Wasserfrosche:: von Märtyrern der Wissenschaft zur biologischen Sensation. Laurenti. Bielefeld. 160 p.

Plötner J. Die westpalaarktischen Wasserfrösche - Von Märtyrern der Wissenschaft zur biologischen Sensation / J. Plötner. - Laurenti Verlag, Bielefeld, 2005. - 160 Seiten.

Pollister A.W., Moore J.A. (1937). Tables for the normal development of Rana sylvatica. The Anatomical Record, 68(4), 489–496. https://doi.org/10.1002/ar.1090680410

Pruvost N.B.M. (2013). Impact of gamete production on breeding systems and population structure of hybridogenetic frogs of the Pelophylax esculentus complex: The evolutionary potential of interspecific hybridization [Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde]. University of Zurich, Faculty of Science.

Reyer H.-U., Arioli-Jakob C., Arioli M. (2015). Post-zygotic selection against parental genotypes during larval development maintains all-hybrid populations of the frog Pelophylax esculentus. BMC Evolutionary Biology, 15(131), 1–16. https://doi.org/10.1186/s12862-015-0404-3

Rodríguez-Rodríguez E.J., Beltrán J.F., Márquez R. (2020). Melanophore metachrosis response in amphibian tadpoles: Effect of background colour, light and temperature. Amphibia-Reptilia, 42(1), 133–140. https://doi.org/10.1163/15685381-bja10032

Shabanov D., Usova O., Kravchenko M. et al. (2015). Sustainable coexistence of the parental species and hemiclonal interspecific hybrids is provided by the variety of ontogenetic strategies. Herpetological Facts Journal, 2, 35–43.

Shabanov D., Vladymyrova M., Leonov A. et al. (2020). Simulation as a Method for Asymptotic System Behavior Identification (e.g. Water Frog Hemiclonal Population Systems). In V.Ermolayev, F.Mallet, V.Yakovyna, H.C.Mayr, A.Spivakovsky (Eds.), Information and Communication Technologies in Education, Research, and Industrial Applications, 1175, 392–414). Springer International Publishing. https://doi.org/10.1007/978-3-030-39459-2_18

Shabanov D.A. (2015). Evolutionary ecology of population systems of water frog hybridogenetic complex (Pelophylax esculentus complex) of Left Bank Forest-Steppe of Ukraine. Oles Honchar Dnipro National University, Dnipropetrovsk. (In Ukrainian).

Shabanov D.A., Biriuk O.V., Korshunov O.V., Kravchenko M.O. (2017). Distribution of the different types of hemiclonal population systems of water frog hybridogenetic complex (Pelophylax esculentus complex) in the Siverskyi Donets basin. In: Modern state and preservanse of nature complexes in Siverskyi Donets basin, 141–144. Sviatohirsk. (In Ukrainian).

Shabanov D.A., Korshunov O.V., Kravchenko M.O. (2009). Which of the water frogs inhabit Kharkiv oblast? Perspectives on terminology and nomenclature. Bìologìâ Ta Valeologìâ, 11, 116–125. (In Ukrainian)

Shabanov D.A., Zinenko O.I., Korshunov O.V. et al. (2006). The study of population systems of green frogs (Rana ecsulenta complex) in Kharkiv region: History, modern condition and prospects. The Journal of V.N.Karazin Kharkiv National University, 3(729), 208–220. (In Russian)

Shumway W. (1940). Stages in the normal development of Rana pipiens I. External form. The Anatomical Record, 78(2), 139–147. https://doi.org/10.1002/ar.1090780202

Taylor A.C., Kollros J.J. (1946). Stages in the normal development of Rana pipiens larvae. The Anatomical Record, 94(1), 7–23. https://doi.org/10.1002/ar.1090940103

Terentyev P.V. (1950). The Frog. Laboratory animals. Soviet science, Moscow. (In Russian).

Thibaudeau G., Altig R. (2012). Coloration of Anuran Tadpoles (Amphibia): Development, Dynamics, Function, and Hypotheses. ISRN Zoology, 2012, 1–16. https://doi.org/10.5402/2012/725203

Tkachenko O.V. (2019). Morphology of larvae of tailless amphibians (Anura, Amphibia) of Ukraine fauna. I. I. Schmalhauzen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv. (In Ukrainian).

Usova O.E., Kravchenko M.O., Shabanov D.A. (2015). The water frogs’ (Pelophylax esculentus complex) intrapopulation ontogenetic strategies. The Journal of V.N.Karazin Kharkiv National University, 25, 223–238. (In Russian)

Zhao T., Li C., Wang X. et al. (2017). Unraveling the relative contribution of inter- and intrapopulation functional variability in wild populations of a tadpole species. Ecology and Evolution, 7(13), 4726–4734. https://doi.org/10.1002/ece3.3048

Published
2021-12-30
Cited
How to Cite
Drohvalenko, M. (2021). Tadpole morphology features of different Pelophylax esculentus complex forms. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 37, 51-64. https://doi.org/10.26565/2075-5457-2021-37-4
Section
ZOOLOGY AND ECOLOGY