Features of stem cells at different stages of ontogenesis

  • Н. В. Колот
Keywords: stem cell; ontogeny; aging

Abstract

In the process of ontogenesis all organs and tissues of humans and mammals retain" precursors" of embryonic tissue as «minor inclusions» of stem cells. Stem cells are involved in maintaining cellular homeostasis at all stages of ontogenesis, which is based on constant self-renewal of cells. The presence of stem cells in the organism does not protect it from the irreversible stage of ontogenesis – aging. The question is what changes occur in the stem cells at aging and to what extent or age-related changes are due to their somatic environment. The data are discussed and analyzed which show changes in the properties of stem cells and in their environment in ontogenesis, also the article describes analysis of gerontological research involving stem cells.

Downloads

Download data is not yet available.

References

Анисимов В.Н. Молекулярные и физиологические механизмы старения. – СПб: Наука, 2003. – 468с. /Anisimov V.N. Molekulyarnyye i fiziologicheskiye mekhanizmy stareniya. – SPb: Nauka, 2003. – 468s./

Анохина Е.Б., Буравкова Л.Б. Гетерогенность стромальных клеток-предшественников, выделенных из костного мозга крыс // Цитология. – 2007. – Т.49, №1. – С. 40–47. /Anokhina Ye.B., Buravkova L.B. Geterogennost' stromal'nykh kletok-predshestvennikov, vydelennykh iz kostnogo mozga krys // Tsitologiya. – 2007. – T.49, №1. – S. 40–47./

Галицкий В.А. Эпигенетическая природа старения // Цитология. – 2009. – Т.51, №5. – С. 388–397. /Galitskiy V.A. Epigeneticheskaya priroda stareniya // Tsitologiya. – 2009. – T.51, №5. – S. 388–397./

Зверева М.Э., Щербакова Д.М., Донцова О.А. Теломераза: структура, функции и пути регуляции активности // Успехи биологической химии. – 2010. – T.50. – C. 155–202. /Zvereva M.E., Shcherbakova D.M., Dontsova O.A. Telomeraza: struktura, funktsii i puti regulyatsii aktivnosti // Uspekhi biologicheskoy khimii. – 2010. – T.50. – C. 155–202./

Камалов А.А., Охоботов Д.А. Стволовые клетки и их использование в современной клинической практике // Урология. – 2012. – №5. – С. 105–114. /Kamalov A.A., Okhobotov D.A. Stvolovyye kletki i ikh ispol'zovaniye v sovremennoy klinicheskoy praktike // Urologiya. – 2012. – №5. – S. 105–114./

Корочкин Л.И. Cтволовые клетки // Онтогенез. – 2003. – Т.34, №3. – С. 164–166. /Korochkin L.I. Stvolovyye kletki // Ontogenez. – 2003. – T.34, №3. – S. 164–166./

Лагаpькoва М.А., Лякишeва А.В., Филoнeнкo E.С. и др. Хаpактepистика мeзeнхимальных ствoлoвых клeтoк кoстнoгo мoзга, выдeлeнных мeтoдoм иммунoмагнитнoй сeлeкции // Бюл. экспepимeнтальнoй биoлoгии и мeдицины. – 2006. – №141. – C. 112–116. /Lagar'kova M.A., Lyakisheva A.V., Filonenko Ye.S. i dr. Kharakteristika mezenkhimal'nykh stvolovykh kletok kostnogo mozga, vydelennykh metodom immunomagnitnoy selektsii // Byul. eksperimental'noy biologii i meditsiny. – 2006. – №141. – C. 112–116./

Петренко А.Ю., Хунов Ю.А., Иванов Э.Н. Стволовые клетки. Свойства и перспективы клинического применения. – Луганск: «Пресс-Экспресс», 2011. – 368с. /Petrenko A.Yu., Khunov Yu.A., Ivanov Ye.N. Stvolovyye kletki. Svoystva i perspektivy klinicheskogo primeneniya. – Lugansk: «Press-Ekspress», 2011. – 368s./

Прыжкова М.В., Лагарькова М.А. Стволовые клетки: современные тенденции исследований // Онтогенез. – 2004. – Т.35, №6. – С. 473–475. /Pryzhkova M.V., Lagar'kova M.A. Stvolovyye kletki: sovremennyye tendentsii issledovaniy // Ontogenez. – 2004. – T.35, №6. – S. 473–475./

Репин В.С. Эмбриональная стволовая клетка // Успехи физиол. наук. – 2001. – Т.32, №1. – С. 3–18. /Repin V.S. Embrional'naya stvolovaya kletka // Uspekhi fiziol. nauk. – 2001. – T.32, №1. – S. 3–18./

Стадников А.А., Шевлюк Н.Н. Стволовые клетки и репаративная регенерация в постнатальном онтогенезе млекопитающих // Морфология. – 2006. – №6. – С. 84–88. /Stadnikov A.A., Shevlyuk N.N. Stvolovyye kletki i reparativnaya regeneratsiya v postnatal'nom ontogeneze mlekopitayushchikh // Morfologiya. – 2006. – №6. – S. 84–88./

Терских В.В. Ниши стволовых клеток // Изв. РАН. Сер. Биологическая. – 2007. – №3. – С. 261–272. /Terskikh V.V. Nishi stvolovykh kletok // Izv. RAN. Ser. Biologicheskaya. – 2007. – №3. – S. 261–272./

Фролькис В.В. Генорегуляторные механизмы старения – основа развития возрастной патологии // Физиол. журн. – 1990. – №5. – С. 3–11. /Frol'kis V.V. Genoregulyatornyye mehhanizmy stareniya – osnova razvitiya vozrastnoy patologii // Fiziol. zhurn. – 1990. – №5. – S. 3–11./

Чернилевский В.Е. Роль стволовых клеток в самообновлении организмов и возможности продления жизни // Доклады МОИП №41. Секция геронтологии. – М., 2008. – С. 82–95. /Chernilevskiy V.Ye. Rol' stvolovykh kletok v samoobnovlenii organizmov i vozmozhnosti prodleniya zhizni // Doklady MOIP №41. Sektsiya gerontologii. – M., 2008. – S. 82–95./

Чернилевский В.Е. Роль стволовых клеток и упаковок клеточных структур в самообновлении и старении организмов // Докл. МОИП. Общая биол. – 2002. – С. 35–43. /Chernilevskiy V.Ye. Rol' stvolovykh kletok i upakovok kletochnykh struktur v samoobnovlenii i starenii organizmov // Dokl. MOIP. Obshchaya biol. – 2002. – S. 35–43./

Чуйкин И.А., Лянгузова М.С., Поспелов В.А. Сигнальные пути, определяющие пролиферативную активность эмбриональных стволовых клеток мыши // Цитология. – 2007. – Т.49, №5. – С. 370–384. /Chuykin I.A., Lyanguzova M.S., Pospelov V.A. Signal'nyye puti, opredelyayushchiye proliferativnuyu aktivnost' embrional'nykh stvolovykh kletok myshi // Tsitologiya. – 2007. – T.49, №5. – S. 370–384./

Asahara T., Masuda H., Takahashi T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization // Circ. Res. – 1999. – Vol.85. – P. 221–228.

Avilion A.A., Nicolis S.K., Pevny L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function // Genes Dev. – 2003. – Vol.17. – P. 126–140.

Baksh D., Song L., Tuan R.S. Adult mesenchymal stem cells characterization, differentiation and application in cell and gene therapy // J. Cell Mol. 2004. – Vol.8, №3. – P. 301–316.

Beausejour C.M., Campisi J. Ageing: balancing regeneration and cancer // Nature. – 2006. – Vol.443. – P. 404–405.

Blazsek I., Oberlin E. Organotypic specification of stem-cell-nests during ontogenesis // Exp. Hematology. – 2003. – Vol.31, №7. – P. 76–80.

Boiani M., Schöler H.R. Regulatory networks in embryo-derived pluripotent stem cells // Nat. Rev. Mol. Cell Biol. – 2005. – Vol.6. – P. 872–884.

Boyer M., Townsend L., Vogel L.M. et al. Isolation of endothelial cells and their progenitor cells from human peripheral blood // J. Vasc. Surg. – 2000. – Vol.31. – P. 181–189.

Carlson M.E., Conboy I.M. Loss of stem cell regenerative capacity within aged niches // Aging Cell. – 2007. – Vol.6. – P. 371–382.

Cedar S.H., Minger S.L. Human embryonic stem cells: A model for humаn aging in vitro // Experimental Gerontology. – 2008. – Vol.43. – P. 1005–1008.

Cervantes R.B., Stringer J.R., Shao C. et al. Embryonic stem cells and somatic cells differ in mutation frequency and type // PNAS. – 2002. – Vol.99. – P. 3586–3590.

Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells // Cloning Stem Cells. – 2004. – Vol.6, №4. – P. 386–391.

Chambers I., Colby D., Robertson M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells // Cell. – 2003. – Vol.113. – P. 643–655.

Flores I., Blasco M.A. The role of telomeres and telomerase in stem cell aging // FEBS Letters. – 2010. – Vol.584. – P. 3826–3830.

Gallacher L., Murdoch B., Wu D.M. et al. Isolation and characterization of human CD34- Lin- and CD34+Lin- hematopoietic stem cells using cell surface markers AC133 and CD7 // Blood. – 2000. – Vol.95. – P. 2813–2820.

Gan B., Sahin E., Jiang S. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation and mobilization // Proc. Natl. Acad. Sci. U S A. – 2008. – Vol.105, №49. – P. 19384–19389.

Ganju R.K., Brubaker S.A., Meyer J. et al. The α-chemokine stromal cell-derived factor-1α binds to the transmembrane G-proteincoupled CXCR-4 receptor and activates multiple signal transduction pathways // J. Biol. Chem. – 1998. – Vol.273. – P. 23169–23175.

Gaspar-Maia A., Alajem A., Meshorer E. et al. Open chromatin in pluripotency and reprogramming // Nat. Rev. Mol. Cell Biol. – 2011. – Vol.12. – P. 36–47.

Gordon M.Y., Blackett N.M. Reconstruction of the hematopoietic system after stem cell transplantation // Cell Transplant. – 1998. – Vol.7. – P. 339–344.

Grass J.A., Boyer M.E., Pal S. et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling // Proc. Natl. Acad. Sci. USA. – 2003. – Vol.100. – P. 8811–8816.

Henderson J.K., Draper J.S., Bailie H.S. Preimplantation human embryos and embryonic stem cells show comparable expression of stage specific embryonic antigens // Stem Cells. – 2002. – Vol.20, Issue 4. – P. 329–337.

Hipp J., Atala A. Sources of stem cells for regenerative medicine // Sci. China Life. – 2010. – Vol.53, №1. – P. 154–156.

Horuk R. Chemokine receptors // Cytokine Growth Factor Rev. – 2001. – Vol.12. – P. 313–335.

Howell J.C., Lee W.H., Morrison P. et al. Pluripotent stem cells identified in multiple murine tissues // Ann. NY Acad. Sci. – 2003. – Vol.996. – P. 158–173.

Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow // Nature. – 2002. – Vol.418. – P. 41–49.

Keene C.D., Ortiz-Gonzalez X.R., Jiang Y. et al. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos // Cell Transplant. – 2003. – Vol.12. – P. 201–213.

Lee V.M., Stoffel M. Bone marrow: an extra-pancreatic hideout for the elusive pancreatic stem cells? // J. Clin. Invest. – 2003. – Vol.111. – P. 799–801.

Liang Y., Van Zant G., Szilvassy S.J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells // Blood. – 2005. – Vol.106. – P. 1479–1487.

Melcer S., Hezroni H., Rand E. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation // Nat. Com. – 2012. – Vol.19. – P. 1–12.

Morey L., Helin K. Polycomb group protein-mediated repression of transcription // Trends. Biochem. Sci. – 2010. – Vol.35. – P. 323–332.

Musina R.A., Egorov E.E., Beliavskii A.V. Stem cells: properties and perspectives of therapeutic use // Mol. Biol. – 2004. – Vol.38, №4. – P. 563–577.

Ng H.H., Surani M.A. The transcriptional and signalling networks of pluripotency // Nat. Cell Biol. – 2011. – Vol.13, №5. – Р. 490–496.

Orkin S.H., Zon L.I. Hematopoiesis: an evolving paradigm for stem cell biology // Cell. – 2008. – Vol.132. – P. 631–644.

Orlic D., Kajstura J., Chimenti S. et al. Bone marrow stem cells regenerate infarcted myocardium // Pediatr. Transplant. – 2003. – Vol.7. – P. 86–88.

Pan G.J., Chang Z.Y., Scholer H.R. et al. Stem cell pluripotency and transcription factor Oct4 // Cell Res. – 2002. – Vol.12, Issue 5–6. – P. 321–329.

Pera M.F., Trounson A.O. Human embryonic stem cells: prospects for development // Development. – 2004. – Vol.131, №22. – P. 5515–5525.

Pountos I., Giannoudis P.V. Biology of mesenchymal stem cells // J. Care Injured. – 2005. – Vol.36S. – P. S8–S12.

Prezioso C., Orlando V. Polycomb proteins in mammalian cell differentiation and plasticity // FEBS Letters. – 2011. – Vol.585. – P. 2067–2077.

Ratajczak M.Z., Kucia M., Majka M. et al. Heterogeneous populations of bone marrow stem cells – are we spotting on the same cells from the different angles? // Follia Histochemica et Cytobiologica. – 2004а. - Vol.42, №3. – Р. 139–146.

Ratajczak M.Z., Kucia M., Reca R. et al. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ’hide out’ in the bone marrow // Leukemia. – 2004b. – Vol.18. – P. 29–40.

Schwartz R.E., Reyes M., Koodie L. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells // J. Clin. Invest. – 2002. – Vol.109. – P. 1291–1302.

Shyh-Chang N., Daley G.Q., Cantley L.C. Stem cell metabolism in tissue development and aging // Development. – 2013. – Vol.15, №140. – Р. 2535–2547.

Stead E., White J., Faast R. et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities // Oncogene. – 2002. – Vol.21. – P. 8320–8333.

Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. – 2006. – Vol.126. – P. 663–676.

Thomson J.A., Itskovitzeldor J., Shapiro S.S. et al. Embryonic stem cells derived from human blastocysts // Science. – 1998. – Vol.282. – P. 1145–1147.

Whitelaw E., Martin D.I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals // Nat. Genet. – 2001. – Vol.27, №4. – P. 361–365.

Yilmaz O.H., Kiel M.J., Morrison S.J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity // Blood. – 2006. – Vol.107. – P. 924–930.

Ying Q.L., Nichols J., Chambers I. et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 // Cell. – 2003. – Vol.115, №3. – Р. 281–292.

Zhang H., Vutskits L., Pepper M.S., Kiss J.Z. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors // J. Cell Biol. – 2003. – Vol.163. – Р. 1375–1384.

Zhao T., Xu Y. p53 and stem cells: new developments and new concerns // Trend in Cell Biology. – 2010. – Vol.20, №3. - Р. 170–175.

Published
2013-12-27
Cited
How to Cite
Колот, Н. В. (2013). Features of stem cells at different stages of ontogenesis. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 17(1056), 161-170. Retrieved from https://periodicals.karazin.ua/biology/article/view/13903
Section
PHYSIOLOGY OF HUMAN AND ANIMALS