Analysis of embryonic mortality frequency in Drosophila melanogaster stocks with radius incompletus mutation under inbreeding conditions

Keywords: inbreeding; dominant lethal mutations; drosophila; radius incompletus

Abstract

It is known that inbreeding leads to homozygotization of alleles of the most genes. The rate of this process is determined by the degree of kinship between crossed individuals. In addition, inbred breeding is accompanied by a change in the structure and functioning of the genome of cells of females’ generative system: mutational level increases and oogenetic segregation may be violated. This leads to a decrease in the number of laid eggs and an increase in the level of embryonic mortality. This process, described as "the effect of resistance to selection," is aimed at adapting to external conditions and associated with the selection of viable offspring. The character of manifestations of mutational variability is determined to a large extent by the direction of selection. However, up to now our knowledge of the role of the genotype in controlling the level of embryonic mortality in Drosophila melanogaster stocks in conditions of inbred breeding is not deep enough. The purpose of our work was to analyze the frequency of dominant lethal mutations in Drosophila stocks from radiation-contaminated regions of Ukraine (Polesskoe and Ozero), carrying radius incompletus mutation, depending on the degree of inbreeding. It is shown that under conditions of severe inbreeding (without selection) changes in the total frequency of dominant lethal mutations have a cyclic character, which depends on the genotype of the stocks. So, in radius incompletus stock, the indicator studied increases after 10 generations of selection and remains at enough high level for 20 generations. For the stocks from radiation-contaminated territories of Ukraine with radius incompletus mutation, which are contrasting in the level of embryonic mortality, two decrease peaks are shown (for the stock ri(Oz) – after 5 and 65 generations of inbreeding) and an increase (for the line ri(Pol) – after 5 and 32 generations of inbreeding) of the total frequency of dominant lethal mutations. The main factor influencing the change in the mortality level at the stage of early embryogenesis in Drosophila carrying radius incompletus mutation is the genotype of the stocks that are used in the work. It’s contribution increases after 10 (h2gen=44.78), 15 (h2gen=45.86) and 100 (h2gen=46.36) generations of inbreeding. The effect of inbred breeding was observed after 32 (h2inbr=22.61) and 65 (h2inbr=11.89) generations. The combined effect of both factors on the total frequency of dominant lethal mutations is shown for each of the generations studied. The highest values were shown after the 5th (h2comb=53.86) and the 65th (h2comb =40.63) generations of inbred breeding.

Downloads

Download data is not yet available.

Author Biographies

N. Filiponenko, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, filiponenkon@gmail.com

M. Tabachna, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, tabachna95@gmail.com

О. Gorenskaya, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, olgavg2014@gmail.com

References

Васильева Л.А. Изменение системы жилкования крыла Drosophila melanogaster под действием температурного шока и селекции // Журнал общей биологии. – 2005. – Т.66, №1. – С. 68–74. /Vasilyeva L. A. Change in the system of wing venation of Drosophila melanogaster // Biology Bulletin Reviews. – 2005. – Vol.66, no. 1. – Р. 68–74./

Вассерлауф И.Э. Изменение организации хромосом в ядрах трофоцитов яичников Drosophila melanogaster при инбридинге и гибридном дисгенезе // Вестник Томского государственного университета. – 2008. – №316. – С. 178–187. /Wasserlauf I.E. Change in the organization of the nuclei chromosomes of trophocytes in the ovaries Drosophila melanogaster in inbreeding and hybrid dysgenesis // Tomsk State University Journal of Biology. – 2008. – No. 316. – Р. 178–187./

Гвоздев В.А., Кайданов Л.З. Геномная изменчивость, обусловленная транспозициями мобильных генетических элементов, и приспособленность особей Drosophila melanogaster // Журнал общей биологии. – 1986. – Т.47. – С. 51–63. /Gvozdev V.A., Kaidanov L.Z. Genomic variability, caused by transposition of mobile genetic elements, and fitness of individuals of Drosophila melanogaster // Biology Bulletin Reviews. – 1986. – Vol.47. – P. 51–63./

Иовлева О.В. Эксперимент длиною в полвека // Историко-биологические исследования. – 2016. – Т.8, №3. – С. 59–77. /Iovleva O.V. A Half-century-long experiment // Studies in the history of biology. – 2016. – Vol.8, no. 3. – P. 59–77./

Кайданов Л.З., Мыльников С.В., Галкин А.П. и др. Генетические эффекты дестабилизирующего отбора при селекции по адаптивно важным признакам в линиях Drosophila melanogaster // Генетика. – 1997. – Т.33. – С. 1102–1109. / Kaidanov L.Z., Myl’nikov S.V., Galkin A.P. et al. Genetic effects of destabilizing selection for adaptive important traits of Drosophila melanogaster // Russian Journal of Genetics. – 1997. – Vol.33. – P. 1102–1109./

Козерецкая И.А., Проценко А.В., Афанасьева Е.С. и др. Мутационные процессы в природных популяциях Drosophila и Hirundo rustica с радиационно загрязненных территорий Украины // Цитология и генетика. – 2008. – Т.42, №4. – С. 63–68. /Kozeretska I.A., Protsenko A.V., Afanasieva E.S. et al. Mutation processes in natural populations of Drosophila melanogaster and Hirundo rustica from radiation-contaminated regions of Ukraine // Cytology and Genetics. – 2008. – Vol.42, no. 4. – Р. 267–271./

Проблемы генетики в исследованиях на дрозофиле / Под ред. В.В.Хвостовой, Л.И.Корочкина, М.Д.Голубовского. – Новосибирск: Наука, 1977. – 277с. /Genetics problems in Drosophila studies / Edited by V.V.Khvostova, L.I.Korochkin, M.D.Golubovsky. – Novosibirsk: Nauka, 1977. – 277p./

Ратнер В.А., Васильева Л.А. Количественный признак у дрозофилы: генетические, онтогенетические, цитогенетические и популяционные аспекты // Генетика. – 1987. – Т.23, №6. – С. 1070–1081. /Ratner V.A., Vasilyeva L.A. Quantitative trait in Drosophila: genetic, ontogenetic, cytogenetic and population aspects // Russian Journal of Genetics. – 1987. – Vol.23, no. 6. – P. 1070–1081./

Стегний В.Н. Жесткий инбридинг при экстремальных режимах внешней среды – важнейший фактор микроэволюции и видообразования / Генетика. – 2017. – Т.53, №7. – С. 785–795. /Stegniy V.N. Hard inbreeding under extreme environmental conditions is the most important factor of microevolution and speciation // Russian Journal of Genetics. – 2017. – Vol.33, no. 7. – P. 785–795./

Струнников В.А. Возникновение компенсаторного комплекса генов – одна из причин гетерозиса // Журнал общей биологии. – 1974. – Т.35. – С. 666–677. / Strunnikov V.A. The occurrence of compensatory gene complex – one of the reasons of heterosis // Biology Bulletin Reviews – 1974. – Vol.35. – P. 666–677./

Таглина О. В. Изучение спонтанного асинапсиса политенных хромосом слюнных желез Drosophila melanogaster у высокоинбредных линий, комбинированных линий и их гибридов // Вісник Харківського національного університету імені В.Н.Каразіна. Серія: біологія. – 2006. – Вип.3, №729. – С.136–140. /Taglina O.V. Investigation of spontaneous asynapsis of salivary gland polytene chromosomes of Drosophila melanogaster in highly inbred lines, combined lines and their hybrids // Journal of V.N.Karazin Kharkiv National University. Series: Biology. – 2006. – Vol.3, no. 729. – P. 136–140./

Тихомирова M. M. Генетический анализ. – Л.: Изд-во ЛГУ, 1990. – 280с. /Tikhomirova M. M. Genetic analysis. – Leningrad: Leningrad State University Publ., 1990. – 280p./

Филипоненко Н.С., Волкова Н.Е., Костенко В.В. и др. Исследование компонентов приспособленности линий Drosophila melanogaster, полученных из природных популяций с территорий с различным уровнем радиационного загрязнения // Дрозофіла у експериментальній генетиці та біології. Зб. наук. праць. – Х.: ХНУ, 2008. – С. 98–101. /Filiponenko N.S., Volkova N.E., Kostenko V.V. et al. Investigation of the fitness components of Drosophila melanogaster stocks obtained from natural populations from territories with different levels of radiation contamination // Drosophila in the experimental genetics and biology. Collected papers. – Kharkiv: KhNU, 2008. – P. 98–101./

Шумный В.К. Проблемы генетики растений // Вестник ВОГиС. – 2004. – Т.8, №2. – С. 32-39. /Shumny V.K. Problems of plant genetics // Vavilov Journal of Genetics and Breeding. – 2004. – Vol.8, no. 2. – P. 32–39./

Ala-Honkola O., Laine L., Pekkala N. et al. Males benefit from mating with outbred females in Drosophila littoralis: male choice for female genetic quality? // Ethology. – 2015. – Vol.121. – P. 577–585.

Bechsgaard J.S., Hoffmann A.A., Sgroґ C. et al. A comparison of inbreeding depression in tropical and widespread Drosophila species // PLoS ONE. – 2013. – Vol.8, no. 2. – e51176.

Bolshakov V.N., Galkin A.P., Kaidanov L.Z. et al. Closely related Drosophila melanogaster strains with altered fitness also depict changes in their hobo element properties // Genetics Selection Evolution. – 1994. – Vol.26. – P. 205–216.

Huang W., Massouras A., Inoue Y. et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines // Genome Res. – 2014. – Vol.24. – P. 1193–1208.

Kimber C.M., Chippindale A.K. Mutation, condition, and the maintenance of extended lifespan in Drosophila. Current Biology. – 2013. – Vol.23. – P. 2283–2287.

Lindsley D.L., Grell E.H. Genetic variations of Drosophila melanogaster. – Carnegie Inst. Wah. Publ., 1968. – 627p.

Pasyukova E.G., Belyaeva E.S., Kogan G.L. et al. Concerted transpositions of mobile genetic elements coupled with fitness changes in D. melanogaster // Molecular Biology and Evolution. – 1986. – Vol.3 (4). –P. 299–312.

Vasilyeva L.A., Antonenko O.V., Vykhristyuk O.V., Zakharov I.K. Selection changes the pattern of mobile genetic elements in genome of Drosophila melanogaster // Vavilov Journal of Genetics and Breeding. – 2008. – Vol.12, no. 3. – P. 412–425.

Zhimulev I.F. Genetic organization of polytene chromosomes // Advances in Genetics. – 1998. – Vol.39. – P. 1–599.

Published
2018-11-28
Cited
How to Cite
Filiponenko, N., Tabachna, M., & GorenskayaО. (2018). Analysis of embryonic mortality frequency in Drosophila melanogaster stocks with radius incompletus mutation under inbreeding conditions. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 30(30), 29-37. https://doi.org/10.26565/2075-5457-2018-30-4
Section
GENETICS