Structural and functional indices of isolated hepatocytes of rats in the presence of nanoparticles based on europium and gadolinium

Keywords: nanoparticles; europium; gadolinium; TBA-reacting products; thiols; glutathione transferase; glutathione reductase; glutathione peroxidase; hepatocytes

Abstract

The effect of nanoparticles based on europium and gadolinium GdVO4:Eu3+(-) on the pro-antioxidant balance and the activity of a number of enzymes of isolated rat hepatocytes was studied. The relevance of the work is connected with research aimed at studying the mechanisms of interaction of nanoparticles with components of cells of biological objects. To correct some metabolic disturbances, redox-active nanoparticles based on rare-earth metals are promising. Some of them are nanoparticles based on europium and gadolinium GdVO4:Eu3+(-). These nanoparticles have a spherical shape, a charge, can penetrate into cells, are redoxactive. However, it is not known with which molecules and supramolecular complexes they can interact and through this affect metabolism. The purpose of this study was to study the pro-antioxidant balance, the activity of glutathione metabolism enzymes, as well as the activity of some enzymes of rat hepatocyte nitrogen exchange in the presence of europium-based gadolinium and gadolinium GdVO4:Eu3+(-). Hepatocytes were incubated with nanoparticles for 2 and 14 hours, then lysed, and in lysates, LPO parameters, catalase and enzyme metabolism of glutathione, SH group content, activity of nitrogen exchange enzymes – alanine-, aspartate-, tyrosine  aminotransferases and arginase were determined. In the incubation medium, the activity of LDH and aminotransferases as markers of membrane damage was determined. It was established that incubation with nanoparticles did not cause LPO enhancement and damage of plasma membranes of hepatocytes. The effect of these nanoparticles on the content of thiol groups and the activity of glutathione metabolism enzymes has been revealed, which may indicate their ability to influence the state of the glutathione unit of the antioxidant defense system. The incubation of hepatocytes with nanoparticles had practically no effect on the activity of the enzymes of nitrogen metabolism, which is evidence of the local action of nanoparticles based on europium and gadolinium GdVO4:Eu3+(-) in cells.

Downloads

Author Biographies

S. Okhrimenko, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, s.okhrimenko@karazin.ua

G. Ganusova, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, g.ganusova@karazin.ua

K. Sedova, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, kristina.sedova@gmail.com

D. Aristova, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, dar.arist@gmail.com

T. Sirenko, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, tamarasirenko27@gmail.com

A. Grishkova, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, ansygry0894@ukr.net

D. Krugovoy, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, dekry027@gmail.com

A. Pavliy, V.N.Karazin Kharkiv National University

V.N.Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, Ukraine, 61022, akpavliy@gmail.com

References

Аверченко К.А. Механізми впливу редоксактивних наночастинок (ReVO4:Eu3+ і СeО2-х) на біоенергетичні процеси в мітохондріях. Автореф. дис. … канд. фіз.- мат. наук. – Харків, 2016. – 22с. /Averchenko K.A. Mechanisms of the influence of redoxactive nanoparticles (ReVO4: Eu3 + and SeO2-x) on bioenergetic processes in mitochondria. Abstract of PhD theses … phys.-math. sciences. – Kharkiv, 2016. – 22p./

Ганусова Г.В., Каліман П.А. Активність деяких NADP-залежних дегідрогеназ та вміст цитохромів Р-450 і b5 у печінці щурів при введенні хлориду ртуті // Медична хімія. – 2007. – Т.9, №2. – С. 10–13. /Ganusova G.V., Kaliman P.A. Activity of some NADP-dependent dehydrogenases and content of cytochromes Р-450 and b5 in liver of rats at introduction of mercury chloride // Medical Chemistry. – 2007. – Vol.9, no. 2. – P. 10–13./

Нікітченко Ю.В., Падалко В.І., Ткаченко В.М. та ін. Активність глутатіонзалежної антиоксидантної системи печінки і крові щурів залежно від опромінення та раціону харчування // Український біохімічний журнал. – 2008. – Т.80, №6. – С. 66–68. /Nikitchenko Yu.V., Padalko V.I., Tkachenko V.M. et al. Activity of glutathion-dependent antioxidant liver and blood system of rats depending on irradiation and diet // Ukrainian Biochemical Journal. – 2008. – Vol.80, no. 6. – P. 66–68./

Салем А.Э. Взаимодействие митохондриальной аспартатaминотрансферазы с наночастицами коллоидного золота // Вестник Фонда Фундаментальных исследований. − 2014. − №3. – С. 56−62. /Salem A.E. Interaction of mitochondrial aspartate aminotransferase with nanoparticles of colloidal gold // Vestnik of the Fund for Fundamental Research. – 2014. – No. 3. – P. 56–62./

Салем А.Э., Шолух М.В. Влияние наночастиц TiO2 и Fe3O4 на термостабильность митохондриальной аспартатаминотрансферазы // Труды Белорусского государственного университета. – 2014. − Т.9, ч.1. – С. 122−128. /Salem A.E., Sholukh M.V. Influence of TiO2 and Fe3O4 nanoparticles on the thermostability of mitochondrial aspartate aminotransferase // Proceedings of the Belarusian State University. – 2014 – Vol.9, part 1. – P. 122–128./

Северин С.Е., Соловьева Г.А. Практикум по биохимии. – М.: Изд-во Моск. ун-та. – 1989. – 509с.

/Severin S.Ye., Solovyova G.A. Workshop on biochemistry. – Moscow: Publishing house of Moscow University, 1989. – 509 p./

Averchenko K.A., Kavok N.S., Klochkov V.K. et al. Effect of inorganic nanoparticles and organic complexes on their basis on free-radical processes in some model systems // Biopolymers and Cell. – 2015. – Vol.31, no. 2. – P. 138–145.

El-Ansary A., Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview // J. Toxicol. – 2009. – Vol.2009: 754810.

Fadeel B., Garsia-Bennett A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications // Adv. Drug Delivery. – 2010. – Vol.62, no. 3. – P. 362–374.

Ferrari M. Cancer nanotechnology: opportunities and challenges // Nat. Rev. Cancer. – 2005. – Vol.5. – P. 161–171.

Goltsev A.N., Babenko N.N., Gayevskaya Yu.A. et al. Capability of othovanadate-based nanoparticles to in vitro identification and in vivo inhibition of cancer stem cells // Nanosystems, nanomaterials, nanotechnologies. – 2013. – Vol.11, no. 4. – P. 729–739. (In Ukrainian)

Ho D., Wang C.-H.K., Chow E.K.-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine // Science Advances. – 2015. – Vol.1, no. 7. – P. 1–14.

Kaur R., Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems // International Journal of Nanomedicine. – 2013. – Vol.8. – P. 203–220.

Kavok N.S., Averchenko K.A., Klochkov V.K. et al. Mitochondrial potential (∆Ψm) changes in single rat hepatocytes: The effect of orthovanadate nanoparticles doped with rare-earth elements // The European Physical Journal E. – 2014. – Vol.37. – P. 127–139.

Klochkov V.K., Grygorova A.V., Sedyh O.O. et al. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity // Colloid and surfaces A: Physikochem. Eng. Aspects. – 2012. – Vol.409. – P. 176–182.

Klochkov V., Kavok N., Grygorova G. et al. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes // Materials Science and Engineering C. – 2013. – Vol.33 (5). – P. 2708–2712.

Klochkov V.K., Kavok N.S., Grigorova A.V. et al. In vivo effects of rare-earth based nanoparticles on oxidative balance in rats // Materials Science and Engineering C. – 2016. – Vol.9, no. 6. – P. 72–81.

Klochkov V.K., Kavok N.S., Malyukin Yu.V. The effect of a specific interaction of nanocrystals GdYVO4: Eu3+ with cell nuclei // Rep. Natl. Acad. Sci. Ukr. – 2010. – Vol.10. – P. 81–86.

Maynard A.D., Aitken R.J., Butz T. et al. Safe handling of nanotechnology // Nature. – 2006. – Vol.444, no. 7117. – P. 267–269.

Michalet X., Pinaud F.F., Bentolila L.A. et al. Quantum dots for live cells, in vivo imaging, and diagnostics // Science. – 2005. – Vol.307, no. 5709. – P. 538–544.

Murclund S., Nordensson J., Back J. Normal Cu, Zn-superoxide dismutase, Mn-Sod, catalase and glutathione peroxidase in Werner’s syndrome // J. Gerontol. – 1981. – Vol.36, no. 4. – Р. 405–409.

Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel // Science. – 2006. – Vol.311. – P. 622–627.

Ohkawa H., Ohishi N., Yagi K. Assay for peroxides in animal tissues by thioparbituric acid reaction // Anal. Biochem. – 1979. – Vol.95, no. 2. – P. 351–358.

Piao M.J. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis // Toxicology Letters. – 2011. – Vol.201, no. 5. – P. 981–990.

Schepard B. New method for assay of tyrosine transaminase // Anal. Biochem. – 1969. – Vol.30. – P. 443–448.

Unfried K., Albrecht C., Klotz L.O. et al. Cellular responses to nanoparticles: target structures and mechanisms // Nanotoxicology. – 2007. – Vol.1. – P. 52–71.

Published
2018-11-28
Cited
How to Cite
Okhrimenko, S., Ganusova, G., Sedova, K., Aristova, D., Sirenko, T., Grishkova, A., Krugovoy, D., & Pavliy, A. (2018). Structural and functional indices of isolated hepatocytes of rats in the presence of nanoparticles based on europium and gadolinium. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 30(30), 21-28. https://doi.org/10.26565/2075-5457-2018-30-3
Section
BIOCHEMISTRY