Formation stages of pulsed discharge in oxygen and carbon tetrafluoride

  • V. A. Lisovskiy V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
  • P. A. Ogloblina V. N. Karazin Kharkiv National University, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
  • S. V. Dudin V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
  • V. D. Yegorenkov V. N. Karazin Kharkiv National University
  • A. N. Dakhov V. N. Karazin Kharkiv National University
  • V. I. Farenik V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
Keywords: pulse discharge, current and voltage oscilloscope waveforms, discharge formation, plasma phase, afterglow

Abstract

This paper reports the current and voltage oscilloscope waveforms of a pulsed discharge measured in a broad range of frequencies (from 20 to 300 kHz) and duty cycle from 0.15 to 0.85 for two values of oxygen and carbon tetrafluoride pressure values of 0.1 and 1 Torr. Current oscilloscope waveforms of the glow pulsed discharge have been found to possess a plasma phase and an afterglow phase. The following stages of the plasma phase have been observed: 1. The capacitive current pulse of about 0.5–1 μs in duration; 2. The current growth stage the duration of which depends on the gas species, the plasma phase duration and the pressure; 3. The plateau (remarkably pronounced only for carbon tetrafluoride and absent for other gases); 4. The current decrease of tens microseconds in duration down to the level corresponding to that of the direct voltage discharge.

 

 

Downloads

Download data is not yet available.

Author Biographies

V. A. Lisovskiy, V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
с.н.с.
P. A. Ogloblina, V. N. Karazin Kharkiv National University, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
с.н.с.
S. V. Dudin, V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
с.н.с.
V. D. Yegorenkov, V. N. Karazin Kharkiv National University
с.н.с.
A. N. Dakhov, V. N. Karazin Kharkiv National University
с.н.с.
V. I. Farenik, V. N. Karazin Kharkiv National University, Scientific Center of Physical Technologies
с.н.с.

References

Mathur S., Singh M. (Eds.) Nanostructured Materials and Nanotechnology III. — Wiley, 2010. — 179 p.

Harry J. E. Introduction to Plasma Technology: Science, Engineering and Applications. — Wiley, 2010.

Lee J. -H., Liu D. N, Wu Ch. -T. Introduction to flat panel displays. — Wiley, 2008.

Chabert P., Braithwaite N. Physics of RadioFrequency Plasmas, Cambridge University Press. — Cambridge, 2011.

Fridman A. Plasma Chemistry, Cambridge University Press, 2008.

Korolev Yu. D., Mesyats G. A. Physics of pulsed breakdown in gases. — Ekaterinburg: URO-Press, 1998.

Efimova V. PhD Thesis «Study in analytical glow discharge spectrometry and its application in materials science». — Technische Universitat Dresden, 2011.

Potamianou S., Spyrou N., Held B. A study of the behavior of a DC pulsed low pressure point-to-plane discharge // Eur. Phys. J.: AP. — 2003. — Vol. 22. — P. 179–188.

Clement F., Held B., Soulem N., Spyrou N. Polystyrene thin films treatment under DC pulsed discharges conditions in nitrogen // Eur. Phys. J.: AP. — 2001. — Vol. 13. — P. 67–73.

Clement F., Held B., Soulem N. Polystyrene thin films treatment under DC pulsed discharges conditions in oxygen // Eur. Phys. J.: AP. — 2001. — Vol. 16. — P. 141–147.

Clement F., Held B., Soulem N. Polystyrene thin films treatment under DC pulsed discharges conditions in nitrogen-argon and oxygen-argon mixtures // Eur. Phys. J.: AP. — 2002. — Vol. 17. — P. 119–130.

Bussiahn R., Gortchakov S., Lange H., Loffhagen D. Pulsed excitation of low-pressure He-Xe glow discharges // J. Phys. D: Appl. Phys. — 2006. — Vol. 39. — P. 66–72.

Zeze D. A., Joyce A. M., Anderson C. A., Brown N. M. D. Control and mass selection of CnHm fragments in an inductively coupled pulsed plasma // App. Phys. Letters. — 2002. — Vol. 80, No. 1. — P. 22–24.

Booth J. P., Abada H., Chabert P. and Graves D. B. CF and CF2 radical kinetics and transport in a pulsed CF4 ICP // Plasma Sources Sci. Technol. — 2005. — Vol. 14. — P. 273–282.

Maresca A., Orlov K., and Kortshagen U. Experimental study of diffusive cooling of electrons in a pulsed inductively coupled plasma // Physical Review E. — 2002. — Vol. 65, No. 5. — P. 056405.

Malkin O.A. Impulsny tok i relaksatsiya v gaze (Pulsed current and relaxation is a gas). — M.: Atomizdat, 1974. — 280 p.

De Benedictis S., Dilecce G., and Simek M. Excitation and decay of N2(B3Pg, v) states in a pulsed discharge: Kinetics of electrons and long-lived species // Journal of Chemical Phy sics. — 1999. — Vol. 110, No. 6. — P. 2947–2962.

Kono A., Negative ions in processing plasmas and their effect on the plasma structure // Applied Surface Science. — 2002. — Vol. 192, issues 1–4. — P. 115–134.

Gudmundsson J. T., Kouznetsov I. G., Patel K. K. and Lieberman M. A. Electronegativity of low-pressure high-density oxygen discharges // J. Phys. D: Appl. Phys. — 2001. —Vol. 34, No. 7. — P. 1100–1109.

Gudmundsson J. T. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules // J. Phys. D: Appl. Phys. — 2004. — Vol. 37, No. 15. — P. 2073– 2081.

Franklin R. N. The role of O2 (a 1Δg) metastables and associative detachment in discharges in oxygen // J. Phys. D: Appl. Phys. — 2001. — Vol. 34, No. 12. — P. 1834–1839.

Ivanov V. V., Klopovsky K. S., Lopaev D. V., Rakhimov A. T., and Rakhimova T. V. Experimental and Theoretical Investigation of Oxygen Glow Discharge Structure at Low Pressures // IEEE Transactions on Plasma Science. — 1999. — Vol. 27, No. 5. — P. 1279–1287.


Kaga K., Kimura T., Ohe K. Spatial profile measurements of charged particles in capacitively-coupled RF (13.56 MHz) oxygen discharges // Jpn. J. Appl. Phys. — 2001. — Vol. 40, No. 1. — P. 330–331.

Denpoh K., Nanbu K. Self-consistent particle simulation of radio-frequency CF4 discharge: effect of gas pressure // Jpn. J. Appl. Phys. — 2000. — Vol. 39, No. 5A. — P. 2804–2808.

Metsi E., Gogolides E., and Boudouvis A. Instabilities and multiple steady states of radiofrequency discharges in CF4 // Physical Review E. — 1996. — Vol. 54, No. 1. — P. 782–790.

Imtiaz M. A., Tsuruta Sh. and Mieno T. Production of a large-volume negative-ion source using a multistring-type CF4 magnetized plasma // Plasma Sources Sci. Technol. — 2007. — Vol. 16, No. 2. — P. 324–329.
Published
2017-04-27
How to Cite
Lisovskiy, V. A., Ogloblina, P. A., Dudin, S. V., Yegorenkov, V. D., Dakhov, A. N., & Farenik, V. I. (2017). Formation stages of pulsed discharge in oxygen and carbon tetrafluoride. Journal of Surface Physics and Engineering, 1(4), 351-360. Retrieved from https://periodicals.karazin.ua/pse/article/view/8353