Crystalline structure and polymorphism in powders and thin films of dibenzotetraaza[14]annulene
Abstract
The increasing interest in dibenzotetraaza[14]annulene (TAA) is motivated by the demonstrated perspectives for using this organic semiconductor in actively progressive now spintronics and in other fields of electronics. This work is the first study on polymorphism, which may occur in powder and in thin TAA films. The results of this study showed that the initial TAA powder synthesized by chemical methods are both now known polymorphic forms of TAA which were registered at Cambridge Crystallographic Data Centre as GAGVAL and GAGVAL01. It was also found that at the condensation of thin films Gform initially formed while after increasing the film thickness the G01form will forms also and a continuous films have twophases and contain both known polymorphs — G and G01. The Xray diffraction pattern indicated also that crystallites in thin TAA films show a strong preffered orientation (texture) with the (100) plane (for Gpolymorph) and (002) plane (for G01polymorph) parallel to the surface of the substrate.
Downloads
References
Applications of Organic and Printed Electronics. A TechnologyEnabled Revolution / Eugenio Cantatore (editor). — New York: Springer Science + Business Media, 2013. — 180 р.
Thorsten U. Kampen Low Molecular Weight Organic Semiconductors. — Weinheim: WILEYVCH Verlag GmbH & Co. KGaA, 2010. —175 р.
Organic Optoelectronic Materials / Yongfang Li (editor). — Springer International Publishing Switzerland, 2015. — 392 p.
Kang I., Yun H. J., Chung D. S. et all. Record High Hole Mobility in Polymer Semiconductors via SideChain Engineering // Journal of American Chemical Society. — 2013. — Vol. 135, Issue 40. — P. 14896–14899.
Jaehong L., Seunghyun J., Jaeho L. et all. Extraction of Electron Band Mobility in Amorphous Silicon ThinFilm Transistors // Japanese Journal of Applied Physics. — 2012. — Vol. 51, No. 2R. — P. 021402.
Bernstein J. Polymorphism in Molecular Crystals. — New York: Oxford University Press Inc, 2002. — 410 р.
Jones A. O. F., Chattopadhyay B., Geerts Y. H. et all. SubstrateInduced and ThinFilm Phases: Polymorphism of Organic Materials on Surfaces // Advanced Functional Materials. –— 2016. — Vol. 26, Issue 14. — P. 2233–2255.
Hiszpanski A. M., Baur R. M., Kim B. et all. Tuning Polymorphism and Orientation in Organic Semiconductor Thin Films via Postdeposition Processing // Journal of American Chemical Society. — 2014. — Vol. 136, Issue 44. — P. 15749–15756.
Jurchescu O. D., Mourey D. A., Subramanian S. et all. Effects of polymorphism on charge transport in organic semiconductors // Physical Review, B. — 2009. — Vol. 80, Issue 8. — P. 085201.
Achar, B. N., Lokesh, K. S. Studies on polymorphic modifications of copper phthalocyanine // Journal of Solid State Chemistry. — 2004. — Vol. 177, Issue 6. — P. 1987–1993.
Hassan A. K., Gould R. D. Structural Studies of Thermally Evaporated Thin Films of Copper Phthalocyanine // Рhysica status solidi (a). — 1992. — Vol. 132, Issue 1. — Р. 91–101.
Hussein M. T., Nasir E. M., Kasim T. et all. Study the Effect of Annealing Temperature on the Structural, Morphology and Electrical Properties CoPc Thin Films // International Journal of Current Engineering and Technology. — 2014. — Vol. 4, Issue 5. — Р. 3263–3269.
Heutz S., Bayliss S. M., Middleton R. L et. all. Polymorphism in Phthalocyanine Thin Films: Mechanism of the α → β Transition // The Journal of Physical Chemistry, B. — 2000. — Vol. 104, Issue 30. — Р. 7124–7129.
Vasseur K., Rand B. P., Cheyns D. et all. Correlating the Polymorphism of Titanyl Phthalocyanine Thin Films with Solar Cell Performance // The Journal of Physical Chemistry Letters. — 2012. — Vol. 3, Issue 17. — P. 2395–2400.
Kobayashi T., Furukawa C., Ogawa T. et all. Structures of germanium and silicon phthalocyanine thin films: polymorphism and isomorphism // Journal of Porphyrins and Phthalocyanines. — 1997. — Vol. 1, Issue 3. — Р. 297–304.
Orlov V. D., Udovitskiy V. G. The dibenzotetraaza[14]annulenebased compounds and materials: properties and applications // Physical Surface Engineering. — 2014. — Vol. 12, Issue 3. — Р. 372–385.
Wu Q. H., Zhao P., Su Y. et all. Spin transport of dibenzotetraaza[14]annulene complexes with first row transition metals // RSC Advances. — 2015, Issue 5. — Р. 52938–52944.
Wu Q. H., Zhao P., Chen G. Magnetic transport properties of DBTAAbased nanodevices with graphene nanoribbon electrodes // Organic Electronics. — 2015. — Vol. 25 — P. 308–316.
Natanael de Sousa Sousa, Roberto Batista de Lima, Adilson Luis Pereira Silva et all. Theoretical study of dibenzotetraaza[14]annulene complexes with first row transition metals // Computational and Theoretical Chemistry. — 2015. — Vol. 1054. — P. 93–99.
Rabaâ H., Khaledi H., Olmstead M. et all. Com putational Studies of a Paramagnetic Planar Dibenzotetraaza[14]annulene Ni(II) Complex // The Journal of Physical Chemistry, A. —2015. — Vol. 119, Issue 21. — Р. 5189– 5196.
Zwoliński K.M., Eilmes J. New developments in porphyrinlike macrocyclic chemistry: a novel family of dibenzotetraaza[14]annulenebased cofacial dimers // Chemical Communications. — 2016. — Vol. 52, Issue 21. — P. 4084–4087.
Whyte A. M., Shuku Y., Nichol G. S. et all. Planar Ni(II), Cu(II) and Co(II) tetraaza[14] annulenes: Structural, electronic and magnetic properties and application to field effect transistors // Journal of Materials Chemistry. — 2012. — Vol. 22, Issue 34. — P. 17967–17975.
Slipchenko N. I., Udovitskiy V. G., Orlov V. D. Thin films of organic semiconductors for gas sensors development // Functional Materials. — 2003. — Vol. 10, No. 3. — P. 559–564.
Yamana M., Shinozaki M., Kashiwazaki N. Gassensing properties of Cutetraazaannulene thin films // Sensors and Actuators, B. — 2000. — Vol. 66, Issue1. — P. 299–302.
Bin Y., Zhao F., Huang L. et all. Dibenzotetraaza[14]annulene materials for recordable blue laser optical disk // Proceeding of SPIE. — 2007. — Vol. 6827, Quantum Optics, Optical Data Storage, and Advanced Microlithography. — P. 682712(1–4).
Sister E., Gottfried V., Capon M. et all. Structural characterization of the product of oxidation of a macrocyclic cobalt(II) complex in pyridine solution // Inorganic Chemistry. — 1988. — Vol. 27, Issue 4. — P. 600–604.
Azuma N., Tani H., Ozawa T. et all. A crystal modification of dibenzo(b, i)(1, 4, 8, 11)tetraaza[14]annulene: XRay molecular structure and proton tautomerism of the highly nconjugated form // Journal of the Chemical Society, Perkin Transactions, II. — 1995. — Issue 2. — Р. 343–348.
Weiss M. C., Gordon G., Goedken V. L. Crystal and molecular structure of macrocyclic niсkel(II)complex Ni(C18H14N4):dibenzo(b, i) (1, 4, 8, 11)tetraaza[14]annulenenickel(II) // Ino rganic Chemistry. — 1977. — Vol. 16, Issue 2. — P. 305–310.
Deger S., Hanack M., Hiller W., Strahle J. Syntese und Structur von cyano(dihydrodibenzo[b, i][1, 4, 8, 11]tetraazacyclo tetradecinato)co balt(III) // Justus Liebigs Annalen der Che mie. — 1984. — Issue11. — P. 1791– 1797.
Hunziker M., Hiltli B., Rihs G. Metallic conductivity in metal tetraaza[14]iodides the crystal structures of dibenzo[b, i][1, 4, 8, 11] tetraazacyclotetradecinenickel and palladium iodides // Helvetica Chimica Acta. — 1981. — Vol. 64, Issue 1. — Р. 82–89.
Kobayashi T., Yase K., Uyeda N. Direct observation of structure change in Ni phthalocyanine caused by iodine doping // Acta Crystallographica, B. — 1984. — Vol. 41, Issue 3. — P. 263–271.
Mountford Р. Dibenzotetraaza[14]annulenes: versatile ligands for transition and main group metal chemistry // Chemical Society Reviews. — 1998. — Vol. 27, Issue 2. — Р. 105–115.
Orlov V. D., Udovitskiy V. G., Shishkin O. V, Kolos N. N. Peculiarities of complexes based on dibenzo[b, i]1, 4, 8, 11tetraaza[14]annulene. The crystal and molecular structure of nickel(II) complex 5, 7, 12, 14tetramethyl6, 3dibenzoyldibenzo[b, i]1, 4, 8, 11tetraaza[14]annulene // Kharkov University Bulletin. Chemical series. — 2014. — No. 1136, Issue 24(47). — P. 74–81.