Luminescence of quartz glass induced by X-rays

  • И. Н. Мисюра Харьковский национальный университет имени В. Н. Каразина
  • С. И. Кононенко Харьковский национальный университет имени В. Н. Каразина
  • О. В. Калантарьян Харьковский национальный университет имени В. Н. Каразина
  • В. П. Журенко Харьковский национальный университет имени В. Н. Каразина
  • Р. В. Скиба Харьковский национальный университет имени В. Н. Каразина
  • С. С. Авотин Харьковский национальный аграрный университет им. В. В. Докучаева
  • Н. Я. Рохманов Харьковский национальный аграрный университет им. В. В. Докучаева
Keywords: quartz glass, luminescence, X-rays

Abstract

The paper was investigated luminescence of quartz glass excited by X-rays with photon energies up to 60 keV. In the measured luminescence spectra of quartz was observed presence of two intense bands at 3.1 f B (blue) and 4.3 eV (UV) related to its own defects. Position of maximum blue band different from the case ion luminescence. Effect of high energy that ions lose in substance, leading to modifications of quartz defect and maximum of blue band shifting from 3.1 eV to 2.7 eV. The experimental radioluminescence spectra can be well fitted by three Gaussian function.

 

 

Downloads

Download data is not yet available.

Author Biographies

И. Н. Мисюра, Харьковский национальный университет имени В. Н. Каразина
с.н.с.
С. И. Кононенко, Харьковский национальный университет имени В. Н. Каразина
с.н.с.
О. В. Калантарьян, Харьковский национальный университет имени В. Н. Каразина
с.н.с.
В. П. Журенко, Харьковский национальный университет имени В. Н. Каразина
с.н.с.
Р. В. Скиба, Харьковский национальный университет имени В. Н. Каразина
с.н.с.
С. С. Авотин, Харьковский национальный аграрный университет им. В. В. Докучаева
с.н.с.
Н. Я. Рохманов, Харьковский национальный аграрный университет им. В. В. Докучаева
с.н.с.

References

Brichard B., Fernandez A., Ooms H. Radiationhardening techniques of dedicated optical fibres used in plasma diagnostic systems in ITER // Journal of Nuclear Materials. — 2004. — Vol. 329–333. — P. 1456–1460.

Goorsky M. Ion Implantation. InTech, 2012. — P. 330–335.

Girard S., Kuhnhenn J., Gusarov A., Brichard B., Van Uffelen M. Radiation Effects on SilicaBased Optical Fibers: Recent Advances and Future Challenges // IEEE Transactions on Nuclear Science. — 2013. — Vol. 60, No. 3. — P. 2015–2036.

Troska J., Cervelli G., Faccio F., Gill K., Grabit R., Jareno R. M., Sandvik A. -M., Vasey F. Optical readout and control systems for the CMS tracker // IEEE Trans. Nucl. Sci. — 2003. — Vol. 50, No. 4. — P. 1067–1072.

Marshall P. W., Dale C. J., LaBel K. A. Space radiation effects in high performance fiber optic data links for satellite data management // IEEE Trans. Nucl. Sci. — 1996. — Vol. 43, No. 2. — P. 645–653.

Barnes C., Dorsky L., Johnston A., Bergman L., Stassinopoulos E. Overview of fiber optics in the natural space environment // Proc. SPIE Fiber Optics Reliability: Benign and Adverse Environments IV. — 1990. — Vol. 1366. — P. 9–16.

Kakuta T., Shikama T., Nishitani T., Brichard B., Krassilinikov A., Tomashuk A., Yamamoto S., Kasai S. Round-robin irradiation test of radiation resistant optical fibers for ITER diagnostic application // J. Nucl. Mater. — 2002. — Vol. 307–311. — P. 1277–1281.

Ermolaeva G. M., Eronyan M. A., Dukelskii K. V., Komarov A. V., Kondratev Y. N., Serkov M. M., Tolstoy M. N., Shilov V. B., Shevandin V. S., Powell H. T., Thompson C. E. Low-dispersion optical fiber highly transparent in the UV spectral range // Opt. Eng. —
2004. — Vol. 43. — P. 2896–2903.

Skuja L. Optically active oxygen-deficiencyrelated centers in amorphous silicon dioxide // Journal of Non-Crystalline Solids. — 1998. — Vol. 239. — P. 16–48.

Griscom D. L. A Minireview of the Natures of Radiation-Induced Point Defects in Pure and Doped Silica Glasses and Their Visible/ Near-IR Absorption Bands, with Emphasis on Self-Trapped Holes and How They Can Be Controlled // Physics Research International. — 2013. — Vol. 2. — P. 1–14.

Силинь А. Р., Трухин А. Н. Точечные дефекты и элементарные возбуждения в кристаллическом и стеклообразном SiO2. — Рига: Зинатне, 1985. — 244 с.

Галунов Н. З., Семиноженко В. П., Радиолюминесценция органических конденсированных сред. — Киев: «Наукова думка», 2015. — С. 72–75.

Henderson G. S., Baker D. R. Synchrotron Ra diation: Earth, Environmental and Material Sciences Applications // Short Course Series — 2002. — Vol. 30. — P. 159–178.

Salh R. Defect Related Luminescence in Silicon Dioxide Network: A Review / Crystalline Silicon-Properties and Uses / editor Basu S. — Rijeka, Croatia: InTech, 2011. — P. 137–150.

Kononenko S. I., Kalantaryan O. V., Muratov V. I. Quartz investigation under fast proton irradiation by luminescence method // Func. Mat. — 2003. — Vol. 10. — P. 1–7.

Trukhin A. N. Self-trapped exciton luminescence in a-quartz // Nucl. Instr. and Meth. Phys. Res. B. — 1994. — Vol. 91. — P. 334–337.

Corazza A., Crivelli B., Martinit M., Spinolo G. The double nature of the 3.1 eV emission in silica and in Ge-doped silica // Journal of Physics: Condensed Matter. — 1995. — Vol. 7, No. 33.

Koyama H. Cathodoluminescence study of Si02 // J. Appl. Phys. — 1980. — Vol. 51. — P. 2228–2235.

Colin E. J., Embree D. Correlations of the 4.77–4.28 eV luminescence band in silicon dioxide with the oxygen vacancy // J. Appl. Phys. — 1976. — Vol. 47. — P. 5365.

Sakurai Y. The 3.1 eV photoluminescence band in oxygen-deficient silica glass // J Non-Cryst. Solids. — 2000. — Vol. 271. — P. 218–223.

Kononenko S. I., Kalantaryan O. V., Muratov V. I., Zhurenko V. P. Silica luminescence induced by fast light ions // Radiat. Meas. — 2007. — Vol. 42. — P. 751–754.
Published
2017-04-05
How to Cite
Мисюра, И. Н., Кононенко, С. И., Калантарьян, О. В., Журенко, В. П., Скиба, Р. В., Авотин, С. С., & Рохманов, Н. Я. (2017). Luminescence of quartz glass induced by X-rays. Journal of Surface Physics and Engineering, 1(3), 282-288. Retrieved from https://periodicals.karazin.ua/pse/article/view/8316