Determination of eutectic temperature of Au-Ge isolated two-phase nanoparticles on amorphous carbon substrate

  • А. П. Крышталь Харьковский национальный университет имени В. Н. Каразина
Keywords: Nanoparticles, eutectic melting, , electron microscopy, size effect.

Abstract

The results of in situ electron microscopy studies of melting of isolated Au-Ge two-phase particles on an amorphous carbon support have been reported. Nanosized Au-Ge particles have been produced by melting and subsequent crystallization of Au/Ge layered films with eutectic mass ratio of the components. It has been shown that the melting temperature of Au-Ge two-phase particle of ≈20 nm in size was 301 ± 15 °С, and for particle of ≈13 nm in size it was 211 ± 15 °С, which are significantly below the eutectic temperature for macroscopic system (361 °С). 

Downloads

Download data is not yet available.

Author Biography

А. П. Крышталь, Харьковский национальный университет имени В. Н. Каразина
С.н.с.

References

Iliadis A., Singer K. E. The role of germanium in evaporated Au-Ge ohmic contacts to GaAs // Solid-State Electronics. — 1983. — Vol. 26, No. 1. — P. 7–14.

Chidambaram V., Yeung H. B., Shan G. Reliability of Au-Ge and Au-Si Eutectic Solder Al loys for High-Temperature Electronics // Journal of Electronic Materials. — 2012. — Vol. 41, No. 8. — P. 2107–2117.

Guzman J., Boswell-Koller C. N., Beeman J. W. et. al. Reversible phase changes in Ge-Au nano particles // Applied Physics Letters. — 2011. — Vol. 98. — 193101 p.

Wang Z., Jeurgens L. P. H., Wang J. Y., Mittemeijer E. J. Fundamentals of Metal-induced
Crystallization of Amorphous Semiconductors // Adv. Eng. Mater. — 2009. — Vol. 11. — P. 131–135.

Lee J. G., Mori H. TEM Studies on Phase Sta bility in Nanometer-sized Alloy Particles // Solid State Phenomena. — 2007. — Vol. 127. — P. 135–140.

Sutter E. A., Sutter P. Size-Dependent Phase Diagram of Nanoscale Alloy Drops Used in Vapor-Liquid-Solid Growth of Semiconductor Nanowires // ACS Nano. — 2010. — Vol. 4, No. 8. — P. 4943–4947.

Сухов Р. В., Миненков А. А., Крышталь А. П. Понижение температуры эвтектики в наноразмерной слоистой пленочной системе AuGe // Вестник Харьковского национального университета им. В. Н. Каразина. Серия «Физика». — 2010. — № 915, вып. 14. — С. 88–90.

Kryshtal A. P., Sukhov R. V., Minenkov A. A. Critical thickness of contact melting in the Au / Ge layered film system // Journal of Alloys and Compounds. — 2012. — Vol. 512. — P. 311–315.

Adhikari H., Marshall A. F., Goldthorpe I. A. et. al. Metastability of Au-Ge Liquid Nanocatalysts: Ge Vapor-Liquid-Solid Nanowire Growth Far below the Bulk Eutectic Temperature // ASCNano. — 2007. — Vol. 1, No. 5. — P. 415–422.

Kryshtal A. P., Bogatyrenko S. I., Sukhov R. V., Minenkov A. A. The kinetics of the formation of a solid solution in an Ag-Pd polycrystalline film system // Applied Physics A. — 2014. — Vol. 116, No. 4. — P. 1891–1896.

Bogatyrenko S. I. Formation of the solid solutions in the Au-Ni film system: In situ TEM study // Technical Physics. — 2014. — Vol. 59, No. 9. — P. 1374–1377.

Gryaznov V. G., Kaprelov A. M., Belov A. Y. Real temperature of nanoparticles in electron microscope beams // Phil. Mag. Lett. — 1991. — Vol. 63(5). — P. 275–279.

Liu L., Risbud S. H. Realtime hotstage highvol tage transmission electron microscopy precipitation of CdS nanocrystals in glasses: Experiment and theoretical analysis // J. Appl. Phys. — 1994. — Vol. 76. — P. 4576–4580.

Hobbs L. W. Introduction to analytical electron microscopy, ed. J. J. Hren, J. I. Goldstein, and D. C. Joy. — New York: «Plenum Press», 1979. — P. 437–480.
Gladkikh N. T., Chizhik S. P., Larin V. I., et. al. // Soviet Phys. Dokl. — 1988. — Vol. 33 (5). — P. 362–364.

Gladkikh N. T., Bogatyrenko S. I., Kryshtal A. P., Anton R. Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/ Al film system // Applied Surface Science. — 2003. — Vol. 219. — P. 338–346.
Published
2017-02-24
How to Cite
Крышталь, А. П. (2017). Determination of eutectic temperature of Au-Ge isolated two-phase nanoparticles on amorphous carbon substrate. Journal of Surface Physics and Engineering, 13(3), 292 - 297. Retrieved from https://periodicals.karazin.ua/pse/article/view/8007