Obtaining and properties of the system «nanoparticle carbon material – CdS quantum dots»
Abstract
Quantum dots (QDs) today are the objects of intense research of many scientific groups. QDs semiconductor compounds A2B6 attract special attention due to the ability to control the size of QDs in the process of their synthesis, which gives the opportunity to obtain the necessary electronic and optical properties. Successful solution to the problem of obtaining QDs semiconductor materials with appropriate controllable properties largely depends on the choice of environment in which their synthesis is realized. Encapsulation of nanoparticles or introducing them into a chemically inert matrix makes it possible not only to isolate QDs from a chemically active medium, but also to obtain a system of nanoparticles with certain given sizes (pore size matrices). For this reason, the promising material of the matrix is a nanoporous carbon material (NCM) that is chemically inert to most alkalis and acids, and in which it is possible to obtain the required pore sizes for the introduction of QDs.
Downloads
References
Alivisatos A. P. Perspective son the physical chemistry of semiconductor nanocrystals // J. Phys. Chem. – 1996. – Vol. 100, No. 31. – P. 13226-13239.
Alivisatos A. P. Semiconductor clusters, nanocrystals, and quantum dots // Science – 1996. –V. 271, №5251. – P. 933-937.
Brus L. E. Electron-electron and electron-hole interaction sinsmall semiconductor crystallites: the size dependence of the lowes texcited electronicstate // J. Chem. Phys. – 1984. – Vol. 80. – P. 4403-4409.
Colvin V. L., Alivisatos A. P., Tobin J. G., Superlattices Microstruct // Phys. Rev. Lett., – 1991. – Vol. 66. – P. 2786.
Goldstein A. N., Echer C. M., Alivisatos A. P. // Science. - 1992. – Vol. 256. – P. 1425-1427.
Hikmet M., Talapin V., Weller H. Study of conduction mechanism and electroluminescence in CdSe/O˜ZnS quantum dot composites // J. Appl. Phys. – 2003. – Vol. 93. – P. 3509-3514.
Huynh W.V., Dittmer J.J., Alivisatos A.P. Hybrid nanorod-polymer solarcells // Science. – 2002 . – Vol. 295, No. 5564. – P. 2425-2427.
Brus L.E. Quantum crystallites and nonlinear optics // Appl. Phys. A: Mater. Sci. Process. – 1991. – Vol. 53, No. 2283. – P.465-474.
Burova L. I., Pelukhov D. I., Eliseev A. A. Preparation and properties of ZnO nanoparticles in the mesoporous silicamatrix // Superlattices and Microstructures. – 2006. – Vol. 39. – P. 257-266.
Shvets R. Ya., Grygorchak I. I., Borysyuk A. K., Shvachko S. G., Kondyr A. I., Baluk V. I., Kurepa A. S., and Rachiy B. I. New Nanoporous Biocarbons with Ironand Silicon Impurities: Synthesis. Properties. and Application to Supercapacitors // Physics of the Solid State. – 2014. – Vol. 56, No. 10. – P. 2021-2027.
Rachiy B. I., Nykoliuk M. O., Budzulyak I.M., Kachmar A. I. Ultrasonic modification of carbon materials for electrochemical capacitors // Nanoscale Research Letters. – 2017. – Vol. 12:79. DOI 10.1186/s11671-017- 1842-1
Marsh H. Rodriguez-Reinos of Activatedcarbon // Amsterdam: Eslevier. – 2006. –542 p.
Fitzer E., Kochling K., Boehm H., Marsh H. Recommended terminology for the description of carbon as a solid // International union of pure and applied chemistry. – 1995. – Vol. 67, No. 3. – Р. 473-506.
Стойнов З. Б., Графов Б. М., Савова-Стойнова Б., Елкин В. В. Электрохимический импеданс // Наука, 1991. – 336 с.
Bobnar V., Lunkenheimer P., Paraskevo-poulos M., Loidl A. Separation of grainboundary effects and intrinsic properties in perovskite-like Gd0.6Y0.4BaCo2O5.5 using high-frequency dielectric spectroscopy. // Phys. Rev. B. – 2002. – Vol. 65. – P. 184403-184403.
Biniak S., Swiatkowski A., Pakula M., Radovic R. Chemistry and physics of carbon. // New York: Marcel Dekker. – 2001. – Vol. 27. – P. 125.
Лебовка М., Гончарук А., Бойко Ю. Міжфазові взаємодії та електрична провідність в композитах вуглецеві нанорурки/рідкий кристал // Наносистеми, наноматеріали, нанотехнології. – 2009. – Т. 7, № 3. – С. 701-715.
Орешкин П. Т. Фізика полупроводников и диэлектриков // Москва: Высшая школа. – 1977. – C. 448.