Principles of physical image decoding in scanning microwave microscopy

  • Ю. Є. Гордієнко Kharkiv National University of Radio Electronics
  • А. В. Левченко Kharkiv National University of Radio Electronics
  • І. М. Щербань Kharkiv National University of Radio Electronics
Keywords: scanning microwave microscopy, conversion characteristics, reconstruction of images, multiparameter diagnostics, analytical approximation

Abstract

In the paper, the methods of constructing images in SMM are numerically studied, providing visualization of profiles of the distribution of physical parameters of an object in the near-surface region. It is shown that the image of the fundamental signals of the change in the resonant frequency and Q of the resonator scanning probe does not always correspond to the profile of the indicated parameters. To ensure such correspondence, it is proposed to reconstruct the image of these signals on the basis of an analytical approximation of the corresponding conversion characteristics of the probe and formation of the optimal signal packet. In particular, to ensure an imaging of the electrical conductivity profile σ(x, y), a combined signal of the form ΔQ-1f (x, y) should be used. For two-parameter diagnostics of the profile ε (x, y) and the surface profile ΔhZ(x, y), it is advisable to use two signals Δf1(x, y) and Δf2(x, y) for various fixed values of the gap hZ1 and hZ2 and analytical approximations of the corresponding conversion characteristics. The results of the study are illustrated by demonstrating the profile of the common signal and the reconstructed profile of physical quantities.

Downloads

Download data is not yet available.

Author Biographies

Ю. Є. Гордієнко, Kharkiv National University of Radio Electronics

Prof.

А. В. Левченко, Kharkiv National University of Radio Electronics

Scientist

 

І. М. Щербань, Kharkiv National University of Radio Electronics

Scientist

 

References

Bhushan В. Scanning Probe Microscopy - Principle of Operation, Instrumentation, and Probes Springer Handbook of Nanotechnology / B. Bhushan, M. Othmar // ISBN 978-3-540-29855-7. Springer-Verlag Berlin Heidelberg, 2007, 591 p.

Вдовичева Н. К. Глубинная профилометрия свободных носителей в полупроводниках при помощи ближнепольной микроволновой томографии / Н. К. Вдовичева, М. А. Галин, А. Н. Резник, И. А. Шерешевский // Известия РАН. Серия физическая. – 2012. – Т. 76. – № 2. – С. 172-175.

Гайдай Ю. А. Ближнеполевая СВЧ томография приповерхностного слоя диэлектриков / Ю. А. Гайдай, В. С. Сидоренко, О. В. Синькевич // Радиоэлектроника. – 2012. – Т. 55, № 3. – С. 37-42.

Gao C. Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries / C. Gao, B. Hu, I. Takeuchi, K.-S. Chang, X.-D. Xiangand G. Wang // Meas. Sci. Technol. – 2005. – Vol. 16, No. 1. – P. 248-260.

Tselev A. Broadband dielectric microwave microscopy on micron length scales / A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis // Review of Scientific Instruments. – 2007. – Vol. 78. – P. 044701-044701-7.

Weber J. C. A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics / J. C. Weber, J. B. Schager, N. A. Sanford, A. Imtiaz, T. M. Wallis, L. M. Mansfield, K. J. Coakley, K. A. Bertness, P. Kabos, V. M. Bright // Review of Scientific Instruments. – 2012. – Vol. 83, No. 8. – P. 083702.

Tselev A. Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids / A. Tselev, J. Velmurugan, A. V. Ievlev, S. V. Kalinin, and A. Kolmakov // ACS Nano. – 2016. – Vol. 10, No. 3. – P. 3562-3570.

Joseph C. H. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials / C. H. Joseph, G. M. Sardi, S. S. Tuca, G. Gramse, A. Lucibello, E. Proietti, F. Kienberger, R. Marcelli // Journal of Magnetism and Magnetic Materials. – 2016. – Vol. 420. – P. 62-69.

Gaikovich K. P. Inverse problem of near-field scattering in multilayer media / K. P. Gaikovich, P. K. Gaikovich // Inverse Problems. – 2010. – Vol. 26, No. 12. – P. 125013.

T. Monti Multiphysics simulation of a scanning microwave microscope: a joint electromagnetic and thermal analysis / T. Monti, S. W. Kingman // ARMMS. – 2015.

Гордиенко Ю. Е. Алгоритм реконструкции изображений в ближнеполевой сканирующей микроскопии / Ю. Е. Гордиенко, С. И. Мельник, Н. И. Слипченко, В. В. Петров, А. Л. Ищенко // Радиотехника. – 2003. – C. 135.

Gordienko Yu. Ye. Analytical simulation of instrumentation performance of resonance probes in scanning microwave microscopy / Yu. E. Gordienko, S. U. Larkin, A. M. Prokaza // Telecommunications and Radio Engineering. – 2012. – Vol. 71, No. 12. – P. 1115-1123.

Gordienko Yu. Ye. Naturalization of the image in scanning microwave microscopy / Yu. Ye. Gordienko, I. M. Shcherban, A. V. Levchenko // Telecommunications and Radio Engineering. – 2017. – Vol. 76, No. 19. – P. 1769-1775.

Korolyov S. A. Quantitative characterization of semiconductor structures with a scanning microwave microscope / S.A.Korolyov, A.N. Reznik // Review of Scientific Instruments. – 2018. – Vol. 89, No. 2. – P. 023706.

Gordienko Yu. Ye. Naturalization of the image in scanning microwave microscopy / Yu. Ye. Gordienko, I. M. Shcherban, A. V. Levchenko // Telecommunications and Radio Engineering. – 2017. – Vol. 76, No. 19. – P. 1769-1775.

Published
2019-08-01
How to Cite
Гордієнко, Ю. Є., Левченко, А. В., & Щербань, І. М. (2019). Principles of physical image decoding in scanning microwave microscopy. Journal of Surface Physics and Engineering, 3(1), 19 -. Retrieved from https://periodicals.karazin.ua/pse/article/view/13580