Pathophysiological features of the mechanisms of cognitive function and their relationship with the emotional state in medical university students
Abstract
Relevance: cognitive processes play an important role in our lives. Intelligent mechanisms of thought: processing and processing information to make decisions helps us in many areas of everyday life. And in the optimization process, knowledge about cognitive processes helps to thoroughly develop methods for initiating and illuminating programs, allowing them to become more effective and efficient, in the normal pathogenesis of illness, in Puppy memory and creativity and the key to developing psychological well-being: A study of cognitive processes help to improve our understanding of psychological well-being and kindness. It allows us to understand what
factors influence our thoughts, emotions and behavior. By focusing on cognitive processes, it is possible to improve the results of learning, healing and the emotional state of students during the learning process. It appears that advertising and marketing widely rely on the influence of the emotional warehouse with the help of information and mental mechanisms.
Therefore, the infusion of positive emotions into memory can help psychologists and consultants develop more effective strategies for helping people with pathological conditions. Systematization and updating of data due to the influx of positive and negative emotions, sleep deprivation during the memory process. We also took into account the infusion of the emotional spectrum into the memory process among students of the Kharkiv National
Medical University.
Conclusions: Varying the pathophysiological features of the mechanisms of cognitive function and their relationship with the emotional state, the influx of positive and negative emotions on the process of memorizing an important topic, oskol How emotions flow into our memory and other cognitive processes. Following the results of the conducted research among students of the Kharkiv National Medical University, the best results in the remembered students will be noted as information from the city, as there is a wine city, and there is no significant marking, as when trained and students feel positive emotions. This knowledge can be of practical importance in education, psychological practice, advertising, marketing and many other matters
psychological practice, advertising, marketing and many other matters.
Downloads
References
/References
2. Osaka M. & Osaka N. Neural bases of focusing attention in working memory: An fMRI study based on individual differences. in The cognitive neuroscience of working memory (ed. Osaka N., Osaka N., Logie R. H., & D’Esposito M.) 99–118 (Oxford
University Press, Oxford, 2007). [Google Scholar]
3. Gläscher J. & Adolphs R. Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. J. Neurosci. 23, 10274–10282 (2003). [PMC free article] [PubMed] [Google Scholar]
4. Isenberg N. et al. Linguistic threat activates the human amygdala. Proc. Natl. Acad. Sci. U. S. A. 96, 10456–10459 (1999). [PMC free article] [PubMed] [Google Scholar]
5. Morris J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121 (Pt 1), 47–57 (1998). [PubMed] [Google Scholar]
6. Kensinger E. A. & Corkin S. Memory enhancement for emotional words: are emotional words more vividly remembered than neutral words? Mem. Cognit. 31, 1169–1180 (2003). [PubMed] [Google Scholar]
7. Osaka M., Komori M., Morishita M. & Osaka N. Neural bases of focusing attention in working memory: an fMRI study based on group differences. Cogn. Affect. Behav. Neurosci. 7, 130–139 (2007). [PubMed] [Google Scholar]
8. Osaka M. & Osaka N. Neural bases of focusing attention in working memory: An fMRI study based on individual differences. in The cognitive neuroscience of working memory (ed. Osaka N., Osaka N., Logie R. H., & D’Esposito M.) 99–118 (Oxford University Press, Oxford, 2007). [Google Scholar]
9. Osaka N. et al. The neural basis of executive function in working memory: an fMRI study based on individual differences. Neuroimage 21, 623–631 (2004). [PubMed] [Google Scholar]
10. Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct. 2019 Dec;224(9):3001-3018. doi: 10.1007/s00429-019-01945-2. Epub 2019 Aug 26. PMID: 31451898; PMCID: PMC6875144.
11. Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10(3):284-294. doi:10.1093/cercor/10.3.284
12. Rushworth MF, Kolling N, Sallet J, Mars RB. Valuation and decision-making in frontal cortex: one or many serial or parallel systems?. Curr Opin Neurobiol. 2012;22(6):946-955. doi:10.1016/j.conb.2012.04.011
13. Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.
14. Dolcos F, LaBar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron. 2004;42(5):855–63.
15. Phelps EA. Human emotion and memory: Interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004;14(2):198–202.
16. Phelps EA, Sharot T. How (and why) emotion enhances the subjective sense of recollection. Curr Dir Psychol Sci. 2008;17(2):147–52.
17. Igaz L. M., Bekinschtein P., Vianna M. M. R., Izquierdo I., Medina J. H. Gene expression during memory formation. Neurotoxicity Research. 2004;6(3):189–203. doi: 10.1007/bf03033221. [PubMed] [CrossRef] [Google Scholar]
18. Igaz L. M., Vianna M. R. M., Medina J. H., Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. The Journal of Neuroscience. 2002;22(15):6781–6789. [PMC freearticle] [PubMed] [Google Scholar]
19. McDermott C. M., LaHoste G. J., Chen C., Musto A., Bazan N. G., Magee J. C. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. The Journal of Neuroscience. 2003;23(29):9687–9695.
doi: 10.1523/JNEUROSCI.23-29-09687.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Ruskin D. N., Liu C., Dunn K. E., Bazan N. G., LaHoste G. J. Sleep deprivation impairs hippocampus-mediated contextual learning but not amygdala-mediated cued learning in rats. European Journal of Neuroscience. 2004;19(11):3121–3124.
doi: 10.1111/j.0953-816X.2004.03426.x. [PubMed] [CrossRef] [Google Scholar]
21. Havekes R., Vecsey C. G., Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cellular Signalling. 2012;24(6):1251–1260. doi: 10.1016/j.cellsig.2012.02.010. [PMC free article] [PubMed] [CrossRef] [Google Schola
Osaka M, Yaoi K, Minamoto T, Osaka N. When do negative and positive emotions modulate working memory performance? Sci Rep. 2013;3:1375.
doi: 10.1038/srep01375. PMID: 23459220; PMCID: PMC3587882.
Osaka M. & Osaka N. Neural bases of focusing attention in working memory: An fMRI study based on individual differences. in The cognitive neuroscience of working memory (ed. Osaka N., Osaka N., Logie R. H., & D'Esposito M.) 99–118 (Oxford University Press, Oxford, 2007). [Google Scholar]
Gläscher J. & Adolphs R. Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. J. Neurosci. 23, 10274–10282 (2003). [PMC free article] [PubMed] [Google Scholar]
Isenberg N. et al. Linguistic threat activates the human amygdala. Proc. Natl. Acad. Sci. U. S. A. 96, 10456–10459 (1999). [PMC free article] [PubMed] [Google Scholar]
Morris J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121 (Pt 1), 47–57 (1998). [PubMed] [Google Scholar]
Kensinger E. A. & Corkin S. Memory enhancement for emotional words: are emotional words more vividly remembered than neutral words? Mem. Cognit. 31, 1169–1180 (2003). [PubMed] [Google Scholar]
Osaka M., Komori M., Morishita M. & Osaka N. Neural bases of focusing attention in working memory: an fMRI study based on group differences. Cogn. Affect. Behav. Neurosci. 7, 130–139 (2007). [PubMed] [Google Scholar]
Osaka M. & Osaka N. Neural bases of focusing attention in working memory: An fMRI study based on individual differences. in The cognitive neuroscience of working memory (ed. Osaka N., Osaka N., Logie R. H., & D'Esposito M.) 99–118 (Oxford University Press, Oxford, 2007). [Google Scholar]
Osaka N. et al. The neural basis of executive function in working memory: an fMRI study based on individual differences. Neuroimage 21, 623–631 (2004). [PubMed] [Google Scholar]
Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct. 2019 Dec;224(9):3001-3018. doi: 10.1007/s00429-019-01945-2. Epub 2019 Aug 26. PMID: 31451898; PMCID: PMC6875144.
Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10(3):284-294. doi:10.1093/cercor/10.3.284
Rushworth MF, Kolling N, Sallet J, Mars RB. Valuation and decision-making in frontal cortex: one or many serial or parallel systems?. Curr Opin Neurobiol. 2012;22(6):946-955. doi:10.1016/j.conb.2012.04.011
Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.
Dolcos F, LaBar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron. 2004;42(5):855–63.
Phelps EA. Human emotion and memory: Interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004;14(2):198–202.
Phelps EA, Sharot T. How (and why) emotion enhances the subjective sense of recollection. Curr Dir Psychol Sci. 2008;17(2):147–52.
Igaz L. M., Bekinschtein P., Vianna M. M. R., Izquierdo I., Medina J. H. Gene expression during memory formation. Neurotoxicity Research. 2004;6(3):189–203. doi: 10.1007/bf03033221. [PubMed] [CrossRef] [Google Scholar]
Igaz L. M., Vianna M. R. M., Medina J. H., Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. The Journal of Neuroscience. 2002;22(15):6781–6789. [PMC free article] [PubMed] [Google Scholar]
McDermott C. M., LaHoste G. J., Chen C., Musto A., Bazan N. G., Magee J. C. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. The Journal of Neuroscience. 2003;23(29):9687–9695. doi: 10.1523/JNEUROSCI.23-29-09687.2003.
[PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ruskin D. N., Liu C., Dunn K. E., Bazan N. G., LaHoste G. J. Sleep deprivation impairs hippocampus-mediated contextual learning but not amygdala-mediated cued learning in rats. European Journal of Neuroscience. 2004;19(11):3121–3124. doi: 10.1111/j.0953-816X.2004.03426.x. [PubMed] [CrossRef] [Google Scholar]
Havekes R., Vecsey C. G., Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cellular Signalling. 2012;24(6):1251–1260. doi: 10.1016/j.cellsig.2012.02.010. [PMC free article]
[PubMed] [CrossRef] [Google Scholar]
This work is licensed under a Creative Commons Attribution 4.0 International License.